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Problem Definition : Over 97% of the power generation capacity to be installed from 2021 to

2050 in the U.S. is expected to be powered by wind, solar, and natural gas. Meanwhile, large-scale

battery systems are planned to support the power systems. It is paramount for policymakers and

electric utilities to deepen the understanding of the operational and investment relations among the

renewable, flexible (natural gas-powered), and storage capacities. In this paper, we optimize both

the joint operations and investment mix of these three types of resources, examining their investment

relations (i.e., investment substitutes or complements). Methodology/results: Using stochastic

control theory, we prove the structure of the optimal storage control policy. From the optimal control

policy, we identify different pairs of charging and discharging operations. We find that whether storage

complements or substitutes other resources hinges on the operational pairs involved and whether

executing these pairs is constrained by charging or discharging. Through extensive numerical analysis

using data from a Florida utility, government agencies, and industry reports, we demonstrate how

storage operations drive the investment relations among renewable, flexible, and storage capacities.

Managerial implications: Several distinct relations are identified: storage and renewables are

substitutes in meeting peak demand; storage complements renewables by storing surplus renewable

output; renewables complement storage by compressing the peak period, making it easier for the

storage to shave the peak demand and displace flexible capacity.

Key words: Renewable energy, flexible generation, energy storage, capacity investment, stochastic

optimal control
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1. Introduction

Electricity and heat generation are the largest contributors to global greenhouse gas (GHG) emissions,

accounting for 32% of global GHG emissions.1 In the U.S., electricity generation makes up 25% of

total GHG emissions, down from 33% in 2010 (U.S. Environmental Protection Agency 2024). The

reduction has been achieved partly by a shift from GHG-intensive coal toward renewables and natural

gas (Drake and York 2021). According to the American Public Power Association (Buttel 2023),

from 2015 to 2022, a total of 234.8 GW of new power generation capacities were built in the U.S., of

which 34.1% was powered by natural gas, 34.1% by wind, 29.7% by solar, 1.2% by other renewables

and wastes, and 0.6% by nuclear. Going forward, the U.S. Energy Information Administration (EIA

2021a) projects that between 2021 and 2050, about 950 GW of new electricity generation capacity

will be installed, of which 46% are expected to come from solar, 12% from wind, and 39% from

natural gas. Evidently, an increasing share of power generation will be from solar and wind power,

whose intermittent output is buffered by natural gas-powered capacity.

Intermittency of renewable generation is also increasingly managed by energy storage, which,

despite being a net energy consumer, plays a crucial role in balancing supply and demand. Recent

investments in energy storage, particularly in batteries, have surged. By the end of 2019, U.S. had

installed 1 GW of utility-scale battery, with 83% added between 2015-2019 EIA (2021b). However,

utility-scale battery capacity soared to 7.8 GW by October 2022 (EIA 2022b) and reached approxi-

mately 16 GW by the end of 2023 (EIA 2024). Future projections are robust, with plans to introduce

an additional 15 GW in 2024 and about 9 GW in 2025 (EIA 2024).

The composition of energy resources is largely decided by utility firms aiming to minimize the

total cost of serving their customers (Anderson 1972), among other policy considerations. Their

decisions are shaped by government incentives and regulations, such as the U.S. federal investment

tax credit for solar and California’s mandates on minimum storage investments by utilities. Given the

substantial projected investments in energy resources—storage, renewable, and flexible resources—it

is critical for the government and the energy sector to grasp the relationship between these resources

in terms of both investment and operations.

On the investment front, it is vital to understand how policies directed toward one type of energy

resource may influence investments in others—whether these energy resources act as investment

complements or substitutes (or figuratively, whether they are friends or foes). For example, federal

tax credits intended to reduce solar investment cost may affect investments in battery and flexible

resources; government funding for electricity storage R&D may lower future storage costs, influencing

1Based on data compiled by World Resources Institute (2024), the top GHG contributing sectors in 2020 were:
electricity/heat (32.0%), transportation (15.3%), manufacturing/construction (13.1%), and agriculture (12.3%).
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investments in renewable and flexible resources. Investment decisions depend on operating policies,

which can be seen evidently through examples. Operationally, battery can store surplus renewable

energy, suggesting that battery and renewable capacities may be complementary investments. On the

other hand, peak demand can be satisfied by flexible, renewable, and/or battery resources, indicating

these capacities could be substitutable investments. In this paper, we aim to address the following

pivotal questions: Under given resource capacities, what is the optimal operating policy for energy

storage, renewable and flexible resources? Under the optimal operating policy, how do the relations

among the optimal investments in these three resources (as investment substitutes or complements)

change with investment costs?

Investments in power generation resources have received considerable research attention. While

we provide a detailed review in Section 2, here we briefly discuss two pertinent studies. Kök et al.

(2020) analyze the investment relations among renewable, flexible, and inflexible resources. In their

setting without storage, costs can be decoupled across periods, allowing for static optimization of

resource operations. Kaps et al. (2023) consider investments in renewable and storage resources

by approximating storage operation dynamics and deriving upper and lower bounds on storage

investment. To the best of our knowledge, our research is the first to examine the joint investment

in renewable, flexible, and storage resources while optimizing storage operations in a stochastic and

dynamic setting. We employ stochastic optimal control theory to optimize resource operations.

This method has rarely been applied in economic analysis for energy systems (see Section 2). We

demonstrate the advantages of this method for optimizing energy generation and storage operations:

The continuous-time model not only reflects the reality of instantaneous balancing of supply and

demand in electricity systems, but also enables a more concise characterization of the optimal control

policy compared to a discrete-time model.

In this paper, we also introduce a novel approach to analyzing how energy storage operations

drive resource investment relations. For every unit of energy charged or discharged, we identify

the source of energy for charging or the energy displaced by discharging. We then pair up units

of charged or discharged energy to deepen our understanding of how the storage policy (optimized

using the control theory) creates value and drives the investment relations among battery, renewable,

and flexible resources.

By tightly connecting operations to investments, this paper offers several practical insights. In

areas with high existing natural gas generation and low renewable penetration, promoting renewable

investments can discourage battery investments and vice versa, as they act as substitutes in meeting

peak demand. However, this substitution relation reverses in two situations. First, when renewable

generation occasionally exceeds the demand, batteries complement renewables by time-shifting the
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surplus output: the batteries may operate predictably (e.g., storing excess solar every morning)

and/or serve as a buffer against uncertainties in demand and renewable output. Second, anticipating

power plant retirements, utilities may consider using batteries to meet part of the peak load, thereby

reducing the need for new flexible capacity. In such a situation, increasing renewable capacity

(even if renewable output never exceeds demand) can compress the peak-load period, making it

easier for batteries to shave the peak load. Thus, renewables and batteries together can substitute

flexible capacity, in contrast to the complementary relation between flexible and renewable capacities

identified by Kök et al. (2020).

2. Literature Review

There is a vast literature on energy operations, with general reviews provided by Parker et al. (2019),

Sunar and Swaminathan (2022), and Mak (2022). Our work considers the context of regulated

utilities investing in flexible fossil fuel capacity, renewable, and storage capacities. Establishing an

optimal investment strategy requires an optimal operating policy for these resources. Four streams

of research are particularly relevant to our study: 1) optimal operations of stand-alone storage units,

2) joint operations of renewables and storage, 3) investments in renewable energy capacity (without

considering storage) and the impact of government policies, and 4) optimal capacity investment in a

renewable-storage combinations. We review each of these streams below.

First, optimal operations of stand-alone storage units in electricity markets have received sig-

nificant research attention. Paine et al. (2014) analyze the optimal operation of a pumped hydro

storage unit under different compensation rules by independent system operators. Using different

modeling approaches, Secomandi (2010) and van de Ven et al. (2013) establish the optimality of a

dual-threshold policy for a storage unit with charging and discharging constraints on a market with

positive electricity prices. Zhou et al. (2016) allow for the possibility of negative prices and show

that the dual-threshold policy may not hold. Xi et al. (2014), Jiang and Powell (2015), and Cruise

et al. (2019), among others, focus on algorithmic and computational aspects. Wu et al. (2022) opti-

mize charging schedules for electric vehicles to minimize charging costs and customers’ inconvenience

cost. In this paper, storage is not stand-alone but is jointly optimized with flexible and renewable

generation, in terms of both operations and investments.

The second research stream considers operations of storage-renewable combinations. Korpaas

et al. (2003), Castronuovo and Lopes (2004) and Del Granado et al. (2014) use a deterministic

optimization approach to find the optimal operation of a storage-renewable combination in a day-

ahead market given forecasts of wind generation and spot market prices. Castronuovo and Lopes

(2004) and Del Granado et al. (2014) use sensitivity analysis to calculate the value of storage, with

the latter study concluding that storage and wind are economic complements. To explicitly capture
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uncertainty in electricity market prices and wind generation, Garcia-Gonzalez et al. (2008) propose

a two-stage stochastic program to optimize the joint operation of a pumped hydro-wind system.

Kamdem and Shittu (2017) use Bender’s decomposition in a two-stage stochastic program for a

grid-connected micro-grid with many dispatchable units and a constraint on emissions. Harsha and

Daleh (2015), Zhou et al. (2019) and Avci et al. (2021) use Markov decision processes to derive

optimal operating policies of a wind-storage unit connected to a grid. Zhou et al. (2019) and Avci

et al. (2021) allow for negative electricity prices and transmission constraints; given the difficulty

in characterizing optimal operating policies under these conditions, they propose well-performing

heuristics. Kim and Powell (2011) explores a wind farm’s optimal commitments in energy markets,

in the presence of storage and conversion losses. Our contribution to this stream includes analyzing

joint operations of storage, renewable, and flexible resources under stochastic conditions, applying

stochastic control to characterize the optimal policies.

The third stream of research studies energy markets with renewable generation and investments

in renewable capacity. Renewable energy integration into energy markets have been examined from

the perspectives of supply function competition (Al-Gwaiz et al. 2017), forward markets (Sunar

and Birge 2019, Peura and Bunn 2021), aggregation (Gao et al. 2024), and consumer adoption

(Huang et al. 2023). On renewable capacity investment, some research considers computational

issues (Parpas and Webster 2014, Bruno et al. 2016), while the majority focuses on how renewable

investors (including households) invest in response to factors such as random demand and a price-

setting utility (Angelus 2021), third-party ownership (Guajardo 2018), feed-in-tariffs (Alizamir et al.

2016, Babich et al. 2020, Goodarzi et al. 2019, Ritzenhofen et al. 2016), net metering (Hu et al. 2015,

Sunar and Swaminathan 2021), tariff structure (Singh and Scheller-Wolf 2022), timing of government

support (Welling 2016), and competition (Siddiqui et al. 2016, Weigelt and Shittu 2016). As in our

research, Aflaki and Netessine (2017), Kök et al. (2018) and Kök et al. (2020) study a utility firm’s

investment in renewable and conventional generation. The key distinction of our research lies in

the inclusion of battery storage investments, necessitating the development of an optimal storage

operating policy as an input to the capacity investment decisions.

Finally, a stream of literature delves into optimal or near optimal investment strategies in energy

storage and renewables. Fertig and Apt (2011) simulate different storage capacities for wind farms

in Texas to meet demand of a large Texas city. Budischak et al. (2013) simulate a large number of

scenarios where batteries could be used with a portfolio of renewables in different locations to meet

electricity demand. Kuznia et al. (2013) and Billionnet et al. (2016) propose two-stage stochastic

mixed-integer programs to find optimal investments in renewable and storage capacities; Brown

et al. (2008) use a similar approach to find optimal pumped storage capacity. Qi et al. (2015) use
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a facility location model to optimize capacities of a transmission network serving wind generators,

where batteries can store wind generation exceeding transmission capacity. Wu et al. (2023) identify

optimal storage investment strategy in a tree network. Sharma et al. (2019) find the optimal battery

size for a home with a given solar capacity through simulation optimization. Cho et al. (2023)

analyze optimal investments of renewable and storage in the residential sector with time-of-use

tariffs. Bertsimas et al. (2023) develop a robust optimization method for optimizing renewable

and storage capacities, and implement it practice. Finally, Kaps et al. (2023) find the optimal

renewable and storage capacities under deterministic demands with two levels (day and night) and

uncertain renewable output modeled by a uniform distribution. They approximate storage operation

dynamics and derive optimal capacity investments in closed form. In our research, under stochastic

demand and renewable generation, we determine the optimal battery operating policy as a foundation

for the high-level problem of optimizing capacity investments. We show that the two problems—

operations and investment—are tightly connected by our new perspective to understand how storage

operations drives resource investments. Our approach captures the value of battery in time-shifting

of demand, buffering demand and renewable uncertainties, encouraging renewable investment, and

reducing reliance on flexible fossil-fuel generation.

3. The Model

We consider the problem of an electric utility firm investing in three types of resources—renewable

and flexible power generators, and battery storage, given their technologies and investment costs.

After these new resources are installed, the utility operates its resource portfolio to meet fluctuating

electricity demands. Our model excludes investments in nuclear or coal-fired power generators. The

existing nuclear or coal-fired plants are assumed to produce a (predetermined) constant power.

3.1 Resource Investment

We assume that a utility-scale battery storage technology is given, and its key technological pa-

rameters include round-trip efficiency α (the proportion of energy output relative to energy input),

battery duration L (amount of time a battery can discharge at its power capacity before depleting

its energy capacity), charging duration Lc (time it takes to fully charge a depleted battery), and

maximum depth of discharge lmax (maximum proportion of the battery’s total energy capacity that

can be used, recommended to ensure longevity and performance). The utility’s battery investment

decision is the battery’s operating energy capacity B (in energy units, MWh), which is the effective

energy capacity that is available for operational purposes to maintain battery longevity. This is

equivalent to deciding the discharging power capacity yBout (maximum power output, in power units,

MW) or the charging power capacity yBin (maximum power input, MW). These three metrics, B, yBout,
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and yBin , are proportional and linked by the battery’s technological parameters. One must install

a total energy capacity of B/lmax to obtain an operating energy capacity of B. The corresponding

power capacities are yBout = B/(lmaxL) and y
B
in = B/(lmaxL

cα).

We assume that the utility’s current renewable, flexible, and storage capacities are yR0 (MW),

yF0 (MW), and B0 (MWh), respectively. The utility’s investment problem is to bring the renewable,

flexible, and storage capacities up to yR ≥ yR0 , y
F ≥ yF0 , and B ≥ B0, to minimize the sum of the

investment cost and the expected discounted operating cost after the investment.

Let kR, kF , and kB denote the investment cost per unit of renewable, flexible, and storage

capacities, respectively. Linear investment cost functions are suitable for utilities to estimate the

investment expenses (see Kök et al. 2018 for a discussion). Let C(yR, yF , B) denote the minimum

expected discounted cost of meeting demand using capacities (yR, yF , B) over a planning horizon of

length T . Then, the utility’s investment problem can be written as

min
{yR,yF ,B}

kR(yR − yR0 ) + kF (yF − yF0 ) + kB(B −B0) + C(yR, yF , B), (1)

s.t. yR ≥ yR0 , y
F ≥ yF0 , B ≥ B0.

To answer the research questions proposed in Section 1, we will analyze how the utility’s optimal ca-

pacity decision (solution to (1)) is impacted by the cost parameters (kR, kF , kB), which are affected

by government policies. In the rest of this section, we formulate the resource operating problem

embedded in (1) and define the operating cost function C(yR, yF , B). This function embodies the

operating characteristics of the renewable, flexible, and storage resources. For the purpose of ad-

dressing the research questions in this paper, we focus on one-time investment, similar to Aflaki and

Netessine (2017) and Kök et al. (2018).

3.2 Modeling Uncertainties

Let Rt ∈ [0, 1] denote the capacity factor of the renewable capacity at time t, i.e., the renewable

capacity can produce a power of yRRt (MW) at time t. Let Dt ≥ 0 (MW) denote the electricity

demand at time t minus the predetermined output from the existing inflexible resources. To cap-

ture the reality that the demand and available renewable power have both seasonal and uncertain

fluctuations, we model Rt and Dt as a composition of deterministic and stochastic processes:

Rt = fr(Rt, rt), Dt = fd(Dt, dt), t ≥ 0, (2)

where fr and fd are twice continuously differentiable functions; Rt and Dt are periodic deterministic

processes with period t0 (in the numerical analysis, we set t0 = 168 hours or 1 week); rt and dt are

diffusion processes governed by the following equations:

drt = µr(rt) dt+ σr(rt) dWr,t, ddt = µd(dt) dt+ σd(dt) dWd,t, t ≥ 0, (3)
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where Wr,t and Wd,t are independent standard Brownian motions, µi(it) and σi(it), for i = r, d, are

drift and diffusion coefficients, respectively. For technical reasons, we assume there exists a bounded

set Y such that (rt, dt) ∈ Y for all t ≥ 0.2 Thus, the demand Dt is also bounded.

Let cFt ($/MWh) denote the power generation cost (primarily fuel cost) of the flexible resources

at time t. The fuel (typically natural gas) is purchased from a supplier at a price adjusted on the

monthly basis, which is a common practice in the industry. Thus, cFt is constant within each month

and changes only across months.

3.3 Resource Operations

As discussed in Section 1, electric grids require supply and demand to be continuously balanced. We

use a continuous-time model to formulate the resource operations problem. The advantage of this

continuous-time model will become evident through the concise structure of the optimal policy.

Let bt ∈ [0, B] denote the amount of (usable) stored energy (in MWh) at time t. Let qBt (in MW)

denote the rate of change in bt:

dbt = qBt dt, (4)

where qBt > 0 (< 0) represents the rate of charging (discharging) at time t. Due to the round-trip

energy loss, raising the stored energy level at rate qBt > 0 requires qBt /α of power input, which must

not exceed yBin , the charging power capacity defined in Section 3.1. When qBt < 0, |qBt | is the power

output from the battery, which is capped at yBout. Therefore, the storage operations are subject to

the following state and rate constraints:

bt ∈ [0, B], (5)

qBt ∈
[
− yBout, αy

B
in

]
. (6)

Let qFt and qRt denote the power output (in MW) of the flexible and renewable resources at time t,

respectively. They must satisfy the capacity (rate) constraints:

qFt ∈ [0, yF ], (7)

qRt ∈ [0, yRRt]. (8)

Note that yRRt − qRt represents renewable power curtailment.

In summary, the system’s state variables include: time t ≥ 0, stored energy level bt ∈ [0, B],

stochastic components of the available renewable power and demand (rt, dt) ∈ Y, and the (fuel)

cost of flexible generation cFt . The control variables are qRt , q
F
t , and qBt , which control renewable

output, flexible generation, and battery storage operations, respectively. We denote a control policy

as π = {(qRt , qFt , qBt ) : t ≥ 0}.
2Proper diffusion coefficient functions σr(rt) and σd(dt) can ensure boundedness of (rt, dt). The boundedness ensures

the cost function in (10) is bounded, which is necessary for proving Lemma 2.
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3.4 Operating Cost and Problem Formulation

Recall that Dt is the demand net the constant inflexible generation. Thus, the mismatch between

the demand and the utility’s total energy supply at time t is given by Dt − qRt − qFt + ψ(qBt ), where

ψ(q) =

 q/α, if q ≥ 0,

q, if q < 0.

The system must not have over- or under-supply of energy. That is, (qRt , q
F
t , q

B
t ) should satisfy

∆t ≡ Dt − qRt − qFt + ψ(qBt ) ≥ 0, (9)

and whenever ∆t > 0 (i.e., demand exceeds the utility’s own power supply), the utility must import

energy from an expensive peaking generator at a contracted price ξ ($/MWh), which is assumed to

be more expensive than the cost of flexible generation: ξ > sup
t≥0

cFt .

Therefore, the demand is met by five sources: (i) inflexible generation at a predetermined cost

(excluded from optimization), (ii) flexible generation at marginal cost cFt , (iii) renewable generation

at no operating cost, (iv) peak import at marginal cost ξ, and (v) energy storage. Given this operating

cost structure and capacities (yR, yF , B), the utility’s problem is to control generation and storage

operations by π = {(qRt , qFt , qBt ) : t ≥ 0} to minimize the discounted operating cost.

We discount costs monthly, in accordance with industry practice. Because cFt is constant within

a month, it is both practically relevant and analytically useful to solve for an optimal policy that

minimizes the average cost for each month. Under an average cost objective, the optimal policy

is more concise and easier to interpret (e.g., the initial system state is irrelevant), facilitating the

derivation of operational insights for managing the system under continuously fluctuating demand

and renewable generation. We formulate the average cost minimization problem under constant

flexible generation cost cF as follows:

C(yR, yF , B, cF ) = inf
π

lim
s→∞

1

s
E
[∫ s

0

(
cF qFt + ξ∆t

)
dt

]
, (10)

s.t. (2)-(9),

where the limit exists because the integrand is bounded. In particular, ∆t is bounded since Dt is

bounded (discussed after (3)) and all controls are bounded.

Let there be M months over the planning horizon [0, T ], and let Tm mark the beginning of the

m-th month (0 = T1 < T2 < · · · < TM+1 = T ). The cost of flexible generation within the m-th

month is denoted by cFm ≡ cFt , t ∈ [Tm, Tm+1). Let γ be the discount rate. Then, the discounted

operating cost function in problem (1) can be expressed as:

C(yR, yF , B) =

M∑
m=1

e−γTm(Tm+1 − Tm)EcFm

[
C(yR, yF , B, cFm)

]
, (11)
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where the expectation is taken on cFm, which is random a priori.

4. Optimal Resource Operations Under Given Investment

In this section, we solve the optimal control problem in (10) and characterize the optimal policy.

4.1 Problem Transformation and Optimality Equation

First, we show that the problem in (10) can be transformed into a simpler one, in which we first

optimize two controls qFt and qBt , and then determine qRt , as detailed in the following lemma.

Lemma 1. The average cost C(yR, yF , B, cF ) in (10) can be determined by the following problem:

C(yR, yF , B, cF ) = inf
{qFt ,qBt ,t≥0}

lim
s→∞

1

s
E
[∫ s

0

(
cF qFt + ξ

(
Dt − yRRt − qFt + ψ(qBt )

)+)
dt

]
, (12)

s.t. state equations: (2), (3), (4),

state constraint: (5),

control constraints: (6), (7).

Furthermore, if {(qFt
∗
, qBt

∗
) : t ≥ 0} is an optimal control for (12), then an optimal control for

(10) is
{(
qRt

∗
= min

{
yRRt, Dt + ψ(qBt

∗
)
}
, qFt

∗
, qBt

∗)
: t ≥ 0

}
, and the curtailed renewable power is(

yRRt −Dt − ψ(qBt
∗
)
)+

.

One of the challenges in solving the optimal control problem in (12) is handling the state con-

straint bt ∈ [0, B] in (5). An approach to solve such a problem with state constraints is to refor-

mulate it using reflecting boundaries. We present the technical details of this approach in Online

Appendix A; we also refer the reader to Harrison (1990) for theoretical foundations. The reflecting

boundary approach allows us to derive the Hamilton-Jacob-Bellman (HJB) equation as well as the

boundary conditions, as stated in the following lemma.

A few notations are used in the lemma. The system state is summarized by x := (b, r, d) (battery

state b, stochastic components of renewable potential r and demand d defined in (3)), X := [0, B]×Y

denotes the state space, U := [0, yF ] × [−yBout, αy
B
in ] denotes the feasible range of the controls, and

C2(P ) is the set of twice continuously differentiable functions on a set P .

Lemma 2 (HJB Equation). For given (yR, yF , B, cF ), suppose

(a) there exists a function ϕ(t, x) ∈ C2
(
[0, t0]×X

)
, such that ϕ(0, x) = ϕ(t0, x), for all x ∈ X , and

(b) there exists a constant v ≥ 0 such that for all t ∈ [0, t0] and x ∈ X , v and ϕ(t, x) satisfy

v =

{
inf

(qF ,qB)∈U
ζ(qF , qB, t, x)

}
+
∂ϕ(t, x)

∂t
+
∑
i=r,d

µi(i)
∂ϕ(t, x)

∂i
+

1

2

∑
i=r,d

σ2i (i)
∂2ϕ(t, x)

∂i2
, (13)

where ζ(qF , qB, t, x) = cF qF + ξ
(
fd(Dt, d)− yRfr(Rt, r)− qF +ψ(qB)

)+
+ qB

∂ϕ(t, x)

∂b
, with boundary
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conditions
∂ϕ(t, 0, r, d)

∂b
= −ξ and

∂ϕ(t, B, r, d)

∂b
= 0. (14)

Then, v = C(yR, yF , B, cF ).

The function ϕ(t, x) is known as a relative cost function (or bias function).3 The difference

ϕ(t, b1, r, d)−ϕ(t, b2, r, d), with b1 < b2, represents the operating cost savings from having b2 units of

stored energy at time t compared to having only b1 units of stored energy at time t, everything else

being equal. Thus, −∂ϕ(t, b, r, d)

∂b
represents the marginal value of stored energy at state (t, b, r, d).

Although ϕ(t, x) is unknown a priori, its properties stated in the following lemma will allow us

to derive the structures of the optimal policy in Section 4.2.

Lemma 3. The relative cost function ϕ(t, b, r, d) has the following properties:

(i) ϕ(t, b, r, d) is convex and decreasing in b for any given (t, r, d) ∈ [0, t0]× Y;

(ii)
∂ϕ(t, b, r, d)

∂b
∈ [−ξ, 0] for all (t, b, r, d) ∈ [0, t0]×X .

Finally, we make a technical remark. Lemma 2 provides a sufficient condition that the average

cost v and the bias function ϕ(t, x) need to satisfy. The HJB equation may not have a solution in

C2. In such a case, the optimal control problem has viscosity solutions; refer to Fleming and Soner

(2006). Since the goal of this section is to understand the structure of the optimal resource operating

policy, we omit the technical analysis related to viscosity solutions.

4.2 Structures of the Optimal Control and Storage Operations Decomposition

To derive the structures of the optimal control for (12), we first solve the optimization problem

embedded in the HJB equation (13) and present the solution in Proposition 1. Since the HJB

equation is for a problem with reflecting boundaries (Online Appendix A), we then adjust the solution

at the boundaries to yield the optimal control for (12), as detailed in Theorem 1.

We begin by observing that the infimum in (13) is attainable due to the continuity of ζ(·) and

the compactness of U . Thus, the minimization problem in (13) can be written as

min
(qF ,qB)∈U

cF qF + ξ
(
D̃(t, r, d)− qF + ψ(qB)

)+
+
∂ϕ(t, b, r, d)

∂b
qB, (15)

where D̃(t, r, d) := Dt − yRRt = fd(Dt, dt) − yRfr(Rt, rt) is the net demand on flexible resources.

As we shall see in Proposition 1 and Theorem 1, whenever b ∈ (0, B), the optimal decision at state

(t, b, r, d) is indeed the solution to (15), which minimizes the sum of the flexible generation cost

cF qF ($/hour), the import energy cost ξ∆+ ($/hour), and the opportunity cost (or gain) of storage

operations. In view of (15), two observations are worth mentioning:

3The HJB equation (13) and the boundary conditions (14) are for the first- and second-order derivatives of ϕ(t, x),
implying that any solution to the HJB equation plus a constant is also a solution. Thus, the value of ϕ(t, x) is meaningful
only when compared to its value at another state or time.
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• The instantaneous opportunity cost (or gain) of discharging (or charging) the storage is
∂ϕ

∂b
qB,

which is linear in qB; this linear form is a result of the continuous-time framework. Online

Appendix B shows a discrete-time version of this term, which does not lead to a concise solution.

• The problem in (15) depends on (t, b, r, d) only through D̃(t, r, d) and ∂ϕ(t, b, r, d)/∂b. Thus,

whenever b ∈ (0, B), the optimal control of the resources depends on the state and time only

through the net demand on flexible resources and the marginal value of stored energy.

For notational convenience, We write D̃(t, r, d) as D̃ and
∂ϕ(t, b, r, d)

∂b
as

∂ϕ

∂b
from this point onward.

Instead of considering a high-dimensional state space, we only need to consider various cases of D̃

and
∂ϕ

∂b
to solve (15), as formalized in Proposition 1 below.

In Proposition 1, q̂B can be interpreted as the ideal battery operations if battery charging and

discharging power capacities are not binding, and q̂F is the desired flexible output considering the

limited battery power capacity while ignoring the flexible capacity constraint. Then, equation (16)

imposes capacity constraints on (q̂F , q̂B) so that (q̃F , q̃B) is feasible and proven optimal.

Proposition 1. The optimal solution to (15), denoted as (q̃F , q̃B), is given as follows:

q̃F = (q̂F )+ ∧ yF and q̃B =
(
q̂B ∨ (−yBout)

)
∧ (αyBin ), (16)

where q̂F and q̂B are determined as follows:

(a) If D̃ > yF ,

(q̂F , q̂B) =


(
yF , yF − D̃

)
, if − ξ ≤ ∂ϕ

∂b < −cF ,(
D̃ − yBout, −D̃

)
, if − cF ≤ ∂ϕ

∂b ≤ 0.
(17)

(b) If 0 < D̃ ≤ yF ,

(q̂F , q̂B) =


(
D̃ + yBin , α(yF− D̃)

)
, if − ξ ≤ ∂ϕ

∂b < − cF

α ,(
D̃, 0

)
, if − cF

α ≤ ∂ϕ
∂b < −cF ,(

D̃ − yBout, −D̃
)
, if − cF ≤ ∂ϕ

∂b ≤ 0.

(18)

(c) If D̃ ≤ 0,

(q̂F , q̂B) =


(
D̃ + yBin , α(yF− D̃)

)
, if − ξ ≤ ∂ϕ

∂b < − cF

α ,(
0, −αD̃

)
, if − cF

α ≤ ∂ϕ
∂b ≤ 0.

(19)

In addition, the optimal decisions q̃F and q̃B have the following relation:

q̃F =
(
D̃ + ψ(q̃B)

)+ ∧ yF . (20)

In Online Appendix B, we analyze a discrete-time version of the model and show that its optimal

policy structure is more complex but converges to the structure in Proposition 1 when the period
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length approaches zero (see Figure B.1). Another advantage of the continuous-time model is that the

concise decisions in Proposition 1 lend themselves to decomposition, which opens up new avenues

for further analysis, as detailed next.

In our setting with three production sources (renewable, flexible, import), charging/discharging

storage at any time may involve multiple sources. The optimal storage decisions in Proposition 1,

however, do not reveal the sources for charging or sink for discharging. To derive further operational

insights, we decompose the storage operations in Proposition 1 into the following four types based

on their marginal cost or benefit:

(i) Charge using renewable output (CR): Store renewable energy that would otherwise be

curtailed. In this case, the marginal cost of charging is zero.

(ii) Charge using flexible output (CF): Renewable output is already fully used or stored; storing

more energy requires the flexible capacity to increase production. Thus, the marginal cost of

charging is cF /α (recall that raising b by 1 unit requires 1/α units of input).

(iii) Discharge to reduce import (DI): Discharge to meet demand that would otherwise be met

by importing energy. The marginal benefit (i.e., cost saving) from discharging is ξ.

(iv) Discharge to reduce flexible output (DF): Import is zero in this case; releasing more stored

energy reduces the flexible output. The marginal benefit from discharging is thus cF .

Clearly, CR is prioritized over CF, i.e., we charge battery using renewables before using flexible

generation. Similarly, DI is prioritized over DF, i.e., we discharge battery to replace import first.

Marginal values of storage operations have been discussed in the literature (see Secomandi 2010 and

Zhou et al. 2019) but have not been used to decompose storage operations. In our setting, at any

given time, if the potential amount of CR (or DI) operation is less than the optimal charging (or

discharging) amount in Proposition 1, we know the remaining charging (or discharging) power is

from CF (or DF) operations. Thus, we are able to decompose the charging decisions in Proposition 1

by sources and decompose the discharging decisions by sinks (i.e., replaced sources).4 Furthermore,

we will pair up various types of storage operations to explain how storage creates value and how it

drives investment relations in the next section.

Using the four types of storage operations, we can decompose some decisions in Proposition 1

to reveal the underlying insights, which are illustrate in Figure 1 when b ∈ (0, B). Theorem 1 will

confirm that the decisions in Proposition 1 are indeed optimal when b ∈ (0, B).

4To cement this point, consider the following example with α = 1, yF = 10 GW, Dt = 3 GW, yRRt = 4 GW, and
thus net demand D̃t = −1 GW. Then, we can charge storage using the excess renewable energy up to 1 GW, i.e., CR
potential is 1 GW. If charging 2 GW, the sources must be 1 GW from renewables and 1 GW from flexible output.

For another example, Dt = 10 GW and supply conditions remain the same. The net demand D̃t = 6 GW. Both CR
and DI potentials are zero. If we operate the storage at qBt ∈ (−6, 4) GW, then the flexible capacity must produce
6 + qBt GW. Therefore, the storage operation here is CF or DF because it directly impacts the flexible output.
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Figure 1: The structure of the optimal storage operations (stored energy level b ∈ (0, B))

DI = Discharge to reduce Import (red), DF = Discharge to reduce Flexible output (magenta),
CR = Charge using Renewable output (green), CF = Charge using Flexible output (blue).

All expressions in the callouts are the power (MW) of storage operations. For DI and DF, the power is the
rate of decrease in the stored energy level b. For CR and CF, α times the power is the rate of increase in
b. The horizontal axis can be loosely considered as the stored energy level b since ϕ(·) is convex in b.
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(a) Case of D̃ > yF . Without using storage, the excess demand D̃ − yF has to be met by energy

import at cost ξ; DI potential is D̃− yF . As the opportunity cost of using stored energy (−∂ϕ
∂b )

is no higher than ξ (Lemma 3), it is desirable to perform DI as much as possible, i.e., discharge

the storage at rate (D̃ − yF ) ∧ yBout, as shown in Regions 1 and 2 in Figure 1.

If DI potential does not exceed the storage discharging capacity (i.e., yBout − (D̃ − yF ) > 0), we

can consider whether DF can further reduce cost by comparing the marginal benefit of DF (cF )

with the opportunity cost of discharging (−∂ϕ
∂b ). DF is desirable if and only if −∂ϕ

∂b < cF , as

shown in Regions 1 and 2 in Figure 1 and (17). In Region 2, the total discharge amount is

D̃ ∧ yBout, which means that the storage is used to meet as much demand as possible, consistent

with the second branch of (17).

If DI potential exceeds the storage discharging capacity (D̃ − yF > yBout), both branches of (17)

lead to q̃F = yF and q̃B = −yBout in (16); any remaining demand is met by import.

(b) Case of D̃ ∈ (0, yF ). This case corresponds to the middle band in Figure 1. The flexible resources

can produce exactly D̃ to meet the demand, but such a strategy is optimal only in Region 4.

Region 3 is similar to Region 2 in that −∂ϕ
∂b < cF , implying that DF is desirable. Since there is
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no need for DI here, we replace as much flexible output as possible by performing DF at rate

D̃ ∧ yBout, which is also confirmed by the third branch of (18).

In Region 5, the opportunity gain of charging (−∂ϕ
∂b ) exceeds the marginal cost of CF operation

( c
F

α ), rendering CF operation to be desirable. Since the remaining flexible capacity (after meeting

demand) is yF − D̃, we perform CF as much as possible at rate (yF − D̃) ∧ yBin , which is also

reflected in the first branch of (18).

(c) Case of D̃ < 0. In this case where the potential renewable power exceeds the demand, one might

expect that the flexible capacity should stop running and the battery should be charged using

the excess renewable power—CR operation. Performing only CR is optimal in Region 7 (the

second branch of (19)). However, in Region 6, because the opportunity gain of charging battery

exceeds the marginal cost of CF, it is optimal to perform both CF and CR operations. The sum

of CF and CR amount is (yF − D̃) ∧ yBin , consistent with the first branch of (19).

The solution provided by Proposition 1 is the optimal control for a problem with reflecting

boundaries. Using this solution, we can construct the optimal control for the original problem in

(12), as detailed in Theorem 1. Online Appendix A provides the theory behind this construction. In

Theorem 1, we emphasize the dependence of the policy on time and state (t, x) ≡ (t, b, r, d).

Theorem 1. For (t, x) ∈ [0, t0]×X , let (q̃F (t, x), q̃B(t, x)) be given by (16) in Proposition 1. Define

(
qF

∗
(t, x), qB

∗
(t, x)

)
=


(q̃F (t, x), q̃B(t, x)), if b ∈ (0, B),

(q̃F (t, x), q̃B(t, x) ∨ 0), if b = 0,

(q̃F (t, x), q̃B(t, x) ∧ 0), if b = B.

(21)

Then, an optimal control policy for (12) is

π∗ =
{(
qF

∗
(t− ⌊t/t0⌋, x), qB

∗
(t− ⌊t/t0⌋, x)

)
: t ≥ 0

}
. (22)

Note that the optimal control policy defined by (22) is cyclic with period t0, driven by the cyclic

demand and renewable generation. Within each cycle, Proposition 1 prescribes the optimal control

for b ∈ (0, B). When b is on either boundary, the storage operation is modified according to (21),

which is intuitive. What is less intuitive is that the flexible generation prescribed by Proposition 1

does not need to be modified. This is because if Proposition 1 calls for discharging but b = 0, then

we are in Region 1, where qF is already maxed at yF ; if Proposition 1 calls for charging but b = B,

then we are in Region 7, where qF is already minimized at zero.

In summary, the optimal policy interweaves demand thresholds and cost thresholds, producing a

structure with the following properties ( ⇐⇒ is read as “if and only if”):

(i) First, perform: DI ⇐⇒ D̃ > yF ; CR ⇐⇒ D̃ < 0;
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(ii) If feasible,5 perform: DF ⇐⇒ −∂ϕ
∂b < cF ; CF ⇐⇒ −∂ϕ

∂b >
cF

α .

(iii) Energy flow balance: The total energy inflow (CR + CF) times α is equal to the total energy

outflow (DI + DF) in the long run.

The four types of storage operations can form four pairs: (CR, DI), (CF, DI), (CR, DF), and (CF,

DF). Part (i) highlights that CR and DI are purely driven by the net demand fluctuations: Charging

when D̃ < 0 and discharging when D̃ > yF yields the largest cost saving (ξ per MWh). However, a

policy that aims to perform only CR and DI is almost never optimal, because the amount of excess

renewable energy rarely matches the amount of imported energy, in both long-term averages and

daily cycles. Therefore, DF or CF operations are performed to enable more CR or DI operations,

respectively. Specifically, CR and DF together yield a cost saving of cF per MWh; CF and DI

together yield a cost saving of
(
ξ− cF

α

)
per MWh. Thus, in contrast to CR and DI that are triggered

by the exogenous net demand, CF and DF operations are driven by comparing the endogenous

opportunity cost of storage with the cost of flexible generation, as confirmed in part (ii). Part (iii)

asserts the long-run energy flow balance. The last pair (CF, DF) incurs a net loss of cF
(
1
α − 1

)
and

seems undesirable to perform at any time. However, interestingly, (CF, DF) is occasionally needed

because the uncertain environment prevents us from perfectly matching CF with DI or matching DF

with CR. We will illustrate the subtle role of (CF, DF) in the next section.

5. Capacity Investment Relations and Numerical Analysis

In this section, we analyze the problem in (1) and investigate the utility’s optimal investment in

storage, flexible, and renewable capacities. Our goal is to provide a deep understanding of how the

optimal operations analyzed in Section 4 drive the investment relations among the three resources.

Formally, we define a binary relation among resources:

Definition 1 (Investment relation). For any given optimal solution to (1), resource i substitutes

(resp. complements) resource j if a marginal decrease in i’s investment cost leads to a marginal

decrease (resp. increase) in j’s optimal investment level.

Note that the investment relation is defined in a local sense, and the relation may change as the

optimal investments change. Kök et al. (2020) show that this relation is symmetric (i.e., if resource

i substitutes j, then j substitutes i) for their problem setting where operating costs can be derived.

We generalize their result to a setting where the operating cost function C(yR, yF , B) is unknown

but satisfies some technical conditions, as stated in the following lemma.

5Feasibility simply means that a) the storage has capacity to perform DF or CF after performing DI or CR, b)
qF > 0 to allow DF, qF < yF to allow CF.
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Lemma 4. (i) Investment in a resource decreases in its own capacity cost, i.e., yR
∗
(resp. yF

∗
,

B∗) decreases in kR (resp. kF , kB).

(ii) If it is optimal to invest in all three resources (i.e., yR
∗
> yR0 , y

F ∗
> yF0 , B

∗ > B0) and

the operating cost C(yR, yF , B) is twice differentiable with a non-singular Hessian matrix at

(yR
∗
, yF

∗
, B∗), then the optimal investments are differentiable with respect to costs and satisfy:

∂yR
∗

∂kF
=
∂yF

∗

∂kR
,

∂yR
∗

∂kB
=
∂B∗

∂kR
,

∂yF
∗

∂kB
=
∂B∗

∂kF
.

Note that if we fix one capacity and optimize the other two investment levels, a similar result

holds (e.g., if we fix yF and optimize yR and B, then
∂yR

∗

∂kB
= ∂B∗

∂kR
). Lemma 4 ensures that the

investment relations remain the same regardless of which investment cost we choose to vary.

5.1 The Role of Storage Operations in Investment Relations

In this section, we analyze how capacity investment relations are driven by the optimal storage

operations. As discussed at the end of Section 4, storage reduces the system operating cost through

three pairs of operations: (CR, DI), (CF, DI), and (CR, DF). The value of storage ties to its potential

to execute these operational pairs. Thus, if investing in another resource increases (or decreases) the

opportunities to perform these pairs, the value of the storage may be enhanced (or reduced).

It is difficult to analytically characterize the investment relations under general settings, yet the

fundamental relations can be captured by a special case specified in Assumption 1, which allows for

explicit solution. We use this special case to demonstrate how operations drive investment relations.

Assumption 1 (Special case). (a) Dt and Rt are periodic deterministic processes with period t0;

(b) For any yR ≥ 0, the net demand process D̃t ≡ Dt − yRRt is unimodal in [0, t0].

(c) The battery power capacity constraints are not binding.

Assumption 1(a) ensures analytical tractability and allows us to show that the basic investment

relations are not driven by stochasticity; part (b) implies that the battery will be charged and

discharged once per period; part (c) facilitates quantifying the charging and discharging potentials.

Under Assumption 1 and given yF and yR, there exist s1, s2, s3, s4, such that 0 ≤ s1 ≤ s2 ≤

s3 ≤ s4 ≤ t0, D̃t ∈ [0, yF ] for t ∈ [s1, s2) ∪ [s3, s4), D̃t ≥ yF for t ∈ [s2, s3) and D̃t ≤ 0 for

t ∈ [0, s1) ∪ [s4, t0), as illustrated in Figure 2. If there were no storage, flexible resources would

operate for t ∈ [s1, s4], during which imports are needed for t ∈ [s2, s3]. We define four quantities:

CR potential QCR := −α
∫ t0+s1
s4

D̃t dt is the maximum amount of charging from surplus renewable

output, DI potentialQDI :=
∫ s3
s2

(
D̃t−yF

)
dt is the maximum amount of imports that can be displaced

by storage, CF potential QCF := α
∫ t0+s2
s3

(
yF − D̃+

t

)
dt is the maximum amount of charging using

flexible capacity, and DF potential QDF :=
∫ s4
s1

(
D̃t ∧ yF

)
dt is the maximum amount of flexible

generation that can be displaced by storage. All four quantities depend on yF and yR.
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Figure 2: Net demand curve and charging and discharging potentials
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A full analysis of the optimal operations is provided in Online Appendix C. Theorem 2 provides

an explicit solution to the optimal storage investment under given flexible and renewable capacities.

Theorem 2. Let {cFm : m = 1, . . . ,M} have a stationary distribution represented by a random

variable CF , and define A ≡
∑M

m=1 e
−γTm(Tm+1−Tm)/t0. Then, under Assumption 1 and given yF

and yR, the optimal storage investment B∗ is given as follow:

(i) If QCR ≤ QDI, then

B∗ =


(
QCR +QCF

)
∧QDI, if kB < A

(
ξ − E[CF ]

α

)
,

QCR, if A
(
ξ − E[CF ]

α

)
≤ kB < Aξ,

0, if kB ≥ Aξ.

(ii) If QCR > QDI, then

B∗ =


QCR ∧

(
QDI +QDF

)
, if kB < AE[CF ],

QDI, if AE[CF ] ≤ kB < Aξ,

0, if kB ≥ Aξ.

Theorem 2 reveals how storage cost and its operating potentials determine the optimal storage

size. The cost savings from executing one unit of (CR, DI), (CF, DI), and (CR, DF) operations

are ξ, ξ − E[CF ]
α , and E[CF ] respectively. These savings are scaled by A to reflect the total savings

when one unit of paired operations is performed every period throughout the planning horizon. We

then compare the cost savings against storage capacity cost kB to find the optimal storage capacity.

Intuitively, in Theorem 2(i), where renewable surplus is insufficient to eliminate imports, storage

creates value from (CR, DI) and (CF, DI) pairs. If only (CR, DI) is cost-effective (kB falls within

the second branch of Theorem 2(i)), the storage capacity should align with QCR. If both pairs are

cost-effective, the optimal storage capacity is determined by the lesser of QDI and the total charging

potential QCR+QCF. In Theorem 2(ii), where renewable surplus can fully remove imports, attention

shifts to (CR, DI) and (CR, DF) pairs. The intuitive reasoning is similar. In all cases, the optimal

storage size is dictated by the minimum of the charging and discharging potentials.

Leveraging Theorem 2, we examine the investment relations between storage and either renewable
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or flexible capacities, as summarized in Corollary 1.

Corollary 1. Under the assumptions of Theorem 2 and (QCR+QCF) ̸= QDI ̸= QCR ̸= (QDI+QDF),

we have the following investment relations (all relations are local, as in Definition 1):

(i) Under fixed yF , renewable capacity yR
∗
and storage B∗ are substitutes if B∗ = QDI or B∗ =

QDI +QDF, and are complements if B∗ = QCR or B∗ = QCR +QCF;

(ii) Under fixed yR, flexible capacity yF
∗
and storage B∗ are substitutes if B∗ = QDI, and are

complements if B∗ = QCR +QCF.

We illustrate investment relations in Corollary 1(i) for the case where storage investment is cost-

effective for all three operations pairs, i.e., kB < Amin{E[CF ], ξ − E[CF ]/α}. When the combined

charging potential QCR+QCF is limited (Figure 3(a)), an increase in renewable capacity reduces net

demand, enhancing the charging potential QCR + QCF = B∗, leading to a complementary relation

between renewable and storage capacities. As charging potential further expands with renewable

capacity, discharging potential QDI becomes the limiting factor (Figure 3(b)), changing the relations

between the two capacities to substitutes. Additional renewable capacity then phrases out (CF,

DI) operation and brings into play (CR, DF) operation (Figure 3(c)), where the charging potential

QCR is the limiting factor, reintroducing a complementary relation between renewable and storage

capacities. Finally, with a substantial renewable investment (Figure 3(d)), the storage capacity is

determined by the combined discharging potential QDI + QDF, reverting to a substitutive relation

with the renewable capacity.

Figure 3: Optimal storage investment under various renewable capacities

In each panel, active operations are labeled, and the colored area determines the optimal storage size.
Panels (a) and (b) correspond to Theorem 2(i); panels (c) and (d) correspond to Theorem 2(ii).
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Investment relations under different flexible capacity yF can be simpler. For example, if yF ≡ 0,

then we only have CR and DI operations, and only Figure 3(a) and (d) remain. Thus, the renewable

and storage capacities switches from complements to substitutes as the renewable capacity increases.
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Conversely, if yF is large, the scenario in Figure 3(a) may never occur, and (d) is unlikely to be cost-

effective. Thus, the renewable and storage capacities switches from substitutes in (b) to complements

in (c) as the renewable investment increases. This is what we will observe in the numerical analysis.

For general settings, it is challenging to analytically characterize the optimal capacities as well

as the charging and discharging potentials. In the rest of this section, we consider a realistic setting,

numerically solve for the optimal control policy, and explore the investment relations. Our numerical

analysis shows that the insights gleaned from Theorem 2 apply to broader contexts.

5.2 Data Sources and Model Calibration

We choose a representative utility in Florida, Florida Power & Light (FPL). We consider the optimal

investment in flexible (natural gas), renewable (solar)6 and storage (battery) capacities using the

electricity generation and demand data from FPL. Our goal is not to evaluate FPL’s current portfolio,

but to validate our main theoretical results and explore additional insights.

5.2.1 Resource Parameters

To solve the utility’s investment problem stated in (1), we need to determine the cost parameters of

all resources as well as the technology parameters of the battery.

Battery technology: The key parameters of the battery technology introduced in Section 3.4 are

specified as follows. We assume that the one-way efficiency is 0.95 so that the round-trip efficiency

is α = 0.9025, which is in the range of energy efficiency of Li-ion batteries used as grid-scale energy

storage (Li and Tsing 2015). EIA (2021b) reports that the national average duration of large-scale

batteries is 2.3 hours. Thus, we set charging and discharging duration to be L = Lc = 2.3 hours.

The maximum depth-of-discharge for lithium-ion batteries is about lmax = 0.85.

Investment costs: We discount all yearly maintenance costs to the beginning of the planning

horizon to compute the flexible capacity cost kF . Using the data in EIA (2019), we find kF =

$1.17/W. We fix kF at this value and vary the investment costs of the solar and storage as described

below. According to Feldman et al. (2021), the cost of utility-scale fixed-tilt solar PV systems has

declined to $1.28/Wac in 2020.7 Our analysis considers the capacity cost kR ranging from $1.4/Wac

to a futuristic value of $0.2/Wac. Cole et al. (2021) detail the cost of utility-scale Li-ion batteries

and project that the investment cost of two-hour batteries range from $0.4/Wh in 2020 to less than

$0.2/Wh in 2050. We consider the capacity cost of battery kB from $0.15/Wh to $0.3/Wh. As

6Our theoretical model can be extended to include multiple types of renewable energy, but we choose study one type
of renewable energy in the numerical analysis, so that the investment relations among storage, flexible, and renewable
resources can be clearly delineated.

7Solar power produces direct current (DC). The DC-to-AC ratio for utility-scale solar is 1.37 (Feldman et al. 2021).
These costs are comprehensive, including permits, inspection, interconnection, PV modules, structural and electrical
components, inverter, installation, overhead, etc.
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discussed in Section 3.1, we study one-time resource investment problem; the above investment costs

are incurred at the beginning of the planning horizon.

Operating costs: The operating cost cFt ($/MWh) of flexible generation is obtained by multiplying

the natural gas price ($/MBtu) by a heat rate of 6.82 MBtu/MWh, which implies a 50% efficiency,

typical for a natural gas combined cycle plant. We assume a high cost ξ = $400/MWh for imports.8

Finally, we assume the planning horizon is T = 30 years and the annual discount rate is γ = 5%.

We remark that, resources have ramping constraints in reality. Although we simplify the resources

into fully flexible and inflexible ones in the theoretical model, we investigated the effect of ramping

constraints in numerical analysis; results are available upon request. As the qualitative insights

remain unchanged, we report the results without ramping constraints.

5.2.2 Uncertainty Models

This section details how we estimate the models for the three sources of uncertainties introduced

in Section 3.2. All parameters are estimated for the summer and winter seasons separately and are

reported in Online Appendix D.

We derive an empirical distribution of Henry Hub natural gas spot prices from 2006 to 2020 for

summer (April to September) and winter (October to March). Then, we construct a discrete price

distribution over 9 price points with equal probabilities by matching the cumulative distribution

functions of the discrete distribution and the empirical distribution. We assume that the natural gas

price is in steady state throughout the planning horizon. These 9 prices, multiplied by the heat rate

as mentioned earlier, serve to compute the operating cost in (11).

We specify the renewable capacity factor model in (2) as Rt = Rt
ert

1 + ert
. The deterministic

process Rt represents the diurnal variations of the maximum solar power under clear sky conditions;

the stochastic multiplier st ≡ ert

1 + ert
∈ (0, 1) models the intermittency of solar power (st approaches

1 under clear sky and nears 0 under heavy clouds). Our data shows that rt = log
st

1− st
exhibits

Gaussian distribution. Thus, we model rt as an AR(1) process, the discrete-time analogue of an

Ornstein-Uhlenbeck process (see similar approach in Kim and Powell 2011 and Wu et al. 2023).

As of December 2020, FPL has 32 solar PV sites with total capacity of 2.27 GW. We use FPL’s

Ten-Year Power Plant Site Plans9 to identify these 32 sites and 7 other sites planned for solar. We

use Google Map to find the coordinate of each site; refer to Figure D.1 in Online Appendix D for the

locations of these 39 sites. For each site, we use its coordinate to obtain the hourly solar radiation

data in 2020, as described below.

8Our numerical results show that, under ξ = $400/MWh, only 0.03% to 0.43% of the demand is met by imports.
This is consistent with the electricity spot price: Based on electricity wholesale prices from EIA, in 2019, prices above
$400/MWh occurred in 0.06% of the trading periods, whereas for 2020 it occurred in 0.5% of trading periods.

9Available at http://www.psc.state.fl.us/ElectricNaturalGas/TenYearSitePlans
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The National Solar Radiation Database provides detailed solar radiation data for the entire U.S.

in two measures: the maximum radiation under clear sky and the actual radiation received at the

ground level, denoted as Sclear-sky
i,t and Sground

i,t , respectively, where i represents a location by latitude and

longitude. We then calculate the total solar radiation for FLP’s 39 sites: Sclear-sky
t =

∑39
i=1 yiS

clear-sky
i,t

and Sground
t =

∑39
i=1 yiS

ground
i,t , where yi is the nameplate PV capacity of site i. From these, we compute

Rt = Sclear-sky
t /maxt S

clear-sky
t and st = Sground

t /Sclear-sky
t . The computed Rt contains both diurnal and

seasonal variations. To simplify the computation for solving the HJB equation, we average Rt over

the same hour of day for each season (summer/winter) to obtain a 24-point diurnal profile, creating a

periodic process with a 24-hour cycle. The multiplier st is translated into rt as previously described

and fitted to an AR(1) model.

We specify the demand process in (2) as logDt = Dt + dt. The deterministic component Dt

captures both time-of-day and day-of-week effects; thus Dt is a periodic process with period t0 = 168

hours. The logarithm transformation of the demand data normalizes the stochastic component dt,

which is modeled as an AR(1) process. To calibrate the demand model, we obtain the hourly data

for FPL’s total electricity demand from the U.S. Energy Information Administration (www.eia.gov/

opendata). The FPL’s demand has been generally stable over the past five years, so we assume the

same demand pattern going forward. All estimates are reported in Online Appendix D.

5.2.3 Discretization and Computation Method

The solution of the optimal investment problem (1) involves computing the operating cost in (11)

using the solution to the stochastic control problem in (12). We solve the HJB equation of the

problem in (12) numerically following Kushner and Dupuis (2001), who use a Markov chain with a

discrete state space to approximate the stochastic control problem. The main idea is to discretize

the state space and use finite differences to approximate the derivatives of the value function. We

discretize the state space of the stochastic component rt into 21 levels; the state space of dt is also

discretized similarly. Since the problem is cyclic with a period of 168 hours, we discretize the time

space into 168 levels. The storage space is discretized into 50-200 levels depending on the storage

capacity. The controlled Markov chain approximating the original stochastic control problem is

solved using an iterative method, which combines approximations in policy space and in value space;

see Chapter 6 of Kushner and Dupuis (2001). We leverage the structure of the optimal control in

Section 4.2 to expedite the search for the optimal policy in each iteration.

The investment problem (1) is optimized numerically by exhaustive enumeration of renewable

capacity yR ∈ [0, 60] GW, flexible capacity yF ∈ [0, 25] GW, and storage size B ∈ [0, 80] GWh. For

every given capacity (yR, yF , B), we compute the monthly operating cost in (12) for each value of

cF . We then compute the expected discounted operating cost as in (11).
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5.3 Optimal Investment in Renewables and Battery (Fixed Flexible Capacity)

In this section, we consider a situation where the utility possesses a significant amount of existing

flexible generation capacity that will not retire in the planning horizon. The utility’s investment

focus is on solar and battery capacities only, solving (1) under a predetermined yF .

To convey the scale, the average summer demand for FPL is 17.38 GW (see Appendix D).

Deducting the inflexible (nuclear and coal) output of 4.11 GW, our portfolio needs to meet an average

summer demand of 13.27 GW, with significant diurnal and stochastic variations. To investigate the

relation between solar and battery investments, we consider 13 solar investment cost levels and 4

battery cost levels. For each cost combination, we find the optimal solar and battery capacities,

(yR
∗
, B∗) under fixed flexible capacity yF = 18 GW. The results are illustrated in Figure 4.

Figure 4: Optimal investment in solar and battery under flexible capacity yF = 18 GW

(a) Solar capacity yR
∗
(GW) (b) Battery capacity B∗ (GWh)
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It is evident from Figure 4(a) that a lower cost of solar capacity raises its optimal investment.

Figure 4(b) shows that the optimal battery capacity first decreases and then increases as the cost of

solar decreases (except for the case of high battery cost kB = 0.3/Wh, where not investing in battery

is optimal for a range of solar capacity costs). Therefore, solar and battery are substitutes when the

solar cost is high, whereas they are complements at low solar cost.

Figure 5 depicts the cases with flexible capacity fixed at 16 GW and 14 GW, confirming that

the qualitative trends and relations between battery and solar investments are consistent with those

observed in Figure 4. These results verify the statements in Theorem 2 that solar and battery
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capacities can be substitutes or complements; also refer to Figure 3 and its discussion in Section 5.1.

Next, we analyze underlying operations that drive these investment relations.

Figure 5: Optimal investment in solar and battery under fixed flexible capacity

(a) Flexible capacity yF = 16 GW (b) Flexible capacity yF = 14 GW
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We consider operational details of three representative cases: high solar cost ($1.4/Wac), medium

solar cost ($0.8/Wac), and low solar cost ($0.2/Wac). All three cases have battery cost kB =

$0.15/Wh and fixed flexible capacity yF = 16 GW. The optimal capacity investments for these three

cases are on the red curves in Figure 5(a). Specifically, the optimal solar capacities yR
∗
for the three

cases are 0.25 GW, 15 GW, and 33 GW, respectively; the optimal battery capacities B∗ are 28.6

GWh, 8.6 GWh, and 15.4 GWh, respectively.

The summer average hourly operations for these three representative cases are presented in

Figure 6. In the left panels, the positive bars illustrate how much of the demand is met by flexible

(light blue), solar (yellow), battery discharge (red for DI, magenta for DF), and imported energy

(black). The positive bars stack up to exactly the average demand. The negative bars represent

energy in excess of the demand: flexible generators may produce excess energy to charge the battery

(blue for CF), excess solar energy may be used to charge battery (green for CR) or curtailed (grey).

The right panels in Figure 6 zoom into the battery operations. These figures are similar to the cases

studied in EIA (2022a) in terms of resource proportions.

Case of high solar cost: In Figure 6(a), 0.25 GW of solar capacity supplies for 0.42% of demand on

average. As the solar output never exceeds the demand in this case, the battery creates value only

through (CF, DI) pair. CF operation can run whenever 16 GW of flexible capacity is not fully used.
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Figure 6: Summer average hourly energy resource operations: yF = 16 GW, kB = $0.15/Wh

(a) High solar cost: kR = $1.4/Wac, y
R∗

= 0.25 GW, B∗ = 28.6 GWh
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(b) Medium solar cost: kR = $0.8/Wac, y
R∗

= 15 GW, B∗ = 8.6 GWh
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(c) Low solar cost: kR = $0.2/Wac, y
R∗

= 33 GW, B∗ = 15.4 GWh
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Figure 6(a) shows plenty of unused flexible capacity before noon, whereas DI potential corresponds

to the bars marked as DI and import. Thus, the potential cost saving from (CF, DI) pair is limited by

DI potential, corresponding to Figure 3(b) without CR. Under such a discharging-constrained case,

the battery and renewable capacities are substitutes, confirming the substitution relation observed

in Figures 4 and 5 under high solar cost.

Because of expensive energy import and demand uncertainty, it is optimal to size the battery

to cover most of the demand in the extreme high-demand days. This implies that a large battery

(28.6 GWh in this case) is desirable, and buffering for uncertainty is an important use of the battery.

In fact, the average daily battery discharge (the sum of the red bars for DI in Figure 6(a)) is

12.49 GWh, which is only 43.7% of the battery’s energy capacity, implying a significant buffer for

uncertainty. Such buffering effectively mitigates the high cost of import during demand surges. As

a result, only 0.43% of the total demand is met by imported energy.

Case of medium solar cost: In Figure 6(b), it is optimal to install 15 GW of solar capacity to supply

25.3% of the total demand. The solar energy reduces the daytime net demand, significantly reducing

the DI potential. The battery’s primary role is still to time-shift flexible generation via (CF, DI)

pair, but at a much smaller quantity compared to the case in Figure 6(a). As a result, the optimal

battery capacity, 8.6 GWh, is also much smaller. This is exactly why the battery and solar are

substitutes when the potential benefit of the battery is constrained by DI potential.

It is worth noting that although solar energy cannot satisfy demand on average, solar energy at

times exceeds demand due to uncertainties (in this case, 0.13% of the total solar energy is in excess

of demand). The battery serves as a buffer not only for meeting peak demand but also for storing

the excess solar power, reflected by CR in the right panel of Figure 6(b).

To prepare for CR operation, the battery performs DF operation in the early morning so that

it has adequate room for storing solar energy. Interestingly, we find that the average daily amount

of DF operation is 130 MWh, which exceeds 77 MWh of CR operation. This is because after DF

operation creates room for CR operations, the uncertainties in both solar power and demand may

prevent CR operation from refilling the room. Consequently, the remaining room (created by DF)

is filled by CF operation to enable more DI operation later in the day. Here, although (CF, DF)

pair leads to a (small) net loss, it is tactically and optimally performed to increase the chance of

performing other cost-saving pairs.

Storage operations under uncertainties are also reflected in two other aspects. First, for some

hours, battery may be charged or discharged depending on how uncertainties unfold. Thus, charging

and discharging occur “together” during some hours in the right panel of Figure 6(b). We can also

observe this to a lesser extent in Figure 6(a) and (c). Second, the average discharge over a day is 2.74
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GWh, which is only 31.7% of the battery capacity. As explained before, the low battery utilization

reflects the battery’s role in buffering uncertainties in both demand and solar power.

Case of low solar cost: Figure 6(c) shows a case where a large amount of solar capacity is installed,

supplying 42.6% of the demand directly. The amount of excess solar energy is much more than

in the previous case. The surplus solar energy per day, measured by the bars marked as CR and

solar curtailed in Figure 6(c), is exactly the CR potential. There is plenty of DF potential, as the

flexible generation is the primary source of energy after sunset. Thus, the potential benefit of battery

is limited by CR operation, corresponding to Figure 3(c). Under such a charging-constrained case,

battery and renewable capacities are complements, confirming the complementary relations observed

in Figures 4 and 5. In this case, solar and battery still compete in meeting peak demand, but this

substitution effect is dominated by their complementary operations in storing surplus renewable

generation (CR). Note that the CR potential in Figure 6(c) seems underused. This is because of

uncertainty and cost concerns, as explained next.

In this case, one might expect that more solar output requires more buffer for uncertainty.

However, it may be surprising that the battery utilization is actually 90.8%. Unlike the previous two

cases where the battery reduces costs primarily through (CR, DI) pair, here additional investments

in battery need to be traded off with a smaller marginal benefit from (CR, DF) pair. Consequently,

a higher battery capacity utilization is needed to justify the investment. Figure 6(c) shows how a

high battery utilization is operationalized: discharging occurs mostly in the early morning to create

room for storing solar energy as much as possible in the day; the battery is primarily charged by

solar power, and the remaining excess solar power must be curtailed.

Case of very low solar cost: In a futuristic case when the cost of renewable capacity is drastically

lower and the renewable capacity is very high, the role of the battery is to store excess renewable

output to replace ideally all fossil generation. In such a case, CR potential is expected to exceed

discharging potential, i.e., the potential benefit of storage is limited by discharging operation, corre-

sponding to Figure 3(d). Then, the battery and renewable capacities return to substitutes, as they

compete to replace fossil energy.

Summary: Solar and battery capacities substitute each other in reducing the cost of serving peak

demand or replacing fossil energy, whereas the battery complements solar by storing solar surplus.

These two interactions may coexist. At high or very low solar costs, the substitution effect dominates;

at a low (but not very low) solar cost, the complementary effect is more prominent.

5.4 Optimal Flexible-Renewable-Storage Portfolio

In this section, we consider a situation where all three resources—battery, renewable and flexible

resources—are to be invested. We are interested in several aspects of the investment: First, does
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the substitution and complementary relations observed under fixed flexible capacity continue to hold

when the flexible capacity is jointly optimized? Second, since solar or battery alone can substitute

flexible capacity, do solar and battery capacities compete against or cooperate with each other to

substitute flexible capacity, and how?

We vary the solar cost kR and battery cost kB in the same ranges as in Section 5.3; we include

an additional case where the battery is expensive and not invested; the flexible capacity cost is

kF = $1.17/W (see Section 5.2). We solve for the optimal investment problem in (1) for all cost

combinations. The results are shown in Figure 7.

Figure 7: Optimal capacity investment

(a) Solar capacity yR
∗
(GW) (b) Battery capacity B∗ (GWh) (c) Flexible capacity yF

∗
(GW)
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Figure 7(b) shows that the substitution and complementary relations between solar and battery

discussed Section 5.3 continue to co-exist when flexible capacity is jointly optimized. However, the

substitution effect dominates only under very high cost of solar (above $1.2/Wac). When the solar

cost is below $1.2/Wac, the complementary effect not only dominates, but also appears to be much

stronger than if the flexible capacity is fixed, which is evident from comparing Figure 7(b) with

Figures 4(b) and 5. Importantly, Figure 7(c) shows how the flexible capacity declines as the solar

cost decreases. We can see that the curve tends to be steeper when the battery cost is lower, implying

that the battery complements solar in substituting the flexible capacity.

One reason for the observed strong complementary relation between battery and solar is that the

battery can time-shift solar energy to peak-demand hours, thereby substituting the flexible capacity.

In other words, the large amount of curtailed solar observed previously in Figure 6(c) can now be

27

Electronic copy available at: https://ssrn.com/abstract=3983678



time-shifted to reduce the need for flexible generation in early evenings. Thus, the reduction in

flexible capacity investment can now justify a high investment in battery, which in turn encourages

more investment in solar.

Reduced solar curtailment, however, only explains the strong complementary relation when there

is a lot of excess solar (i.e., when solar cost is below $0.8/Wac). It does not explain why the two

are complements when the solar cost is between $0.8/Wac and $1.2/Wac, for which the optimal

solar capacity is no more than 18.5 GW, implying a very small amount of excess solar. Indeed,

the complementary effect between battery and solar goes beyond just curtailment reduction; they

can complement each other even when solar does not exceed the demand, as we explain below. In

Figure 6(a), the flexible capacity is operating at its capacity in the afternoon and early evening.

If we would like to replace 1 GW of flexible capacity by battery, we would need to add a large

battery and time-shift about 8 GWh of flexible generation to shave this “wide” peak. In contrast,

in Figure 6(b), solar output reshapes the net demand profile, creating a “pointy” peak. As a result,

a much smaller battery can time-shift an adequate amount of flexible generation to replace 1 GW of

flexible capacity. Note that, in this case of high solar cost, solar output does not exceed the demand

and thus is not time-shifted or smoothed by the battery. In short, although solar alone has limited

ability to reduce the maximum net demand level to substitute flexible capacity, solar makes it easier

for battery to shave the peak demand, forging a complementary relation with battery to together

substitute flexible capacity.

6. Concluding Remarks

Renewable, flexible, and storage resources make up most of the new investments in the electricity

industry. This paper explores the optimal operations of these three resources and their joint invest-

ment relations. At the operational level, we employ stochastic optimal control theory to provide a

concise structured policy for the renewable-flexible-storage resource control problem. At the invest-

ment level, we analyze how operations drive investment relations and numerically solve a realistic

model calibrated using real-world data.

We summarize the key operational insights as follows. First, storage operations can be de-

composed to identify the energy source for charging and the energy displaced by discharging. Such

decomposition crystallizes the structure of the optimal storage operations: Charging using renewable

(CR) and discharging to replace import (DI) are driven only by net demand, whereas charging using

flexible (CF) and discharging to replace flexible (DF) are performed opportunistically by comparing

the marginal value of stored energy and the cost of flexible generation. Second, storage reduces cost

via different pairs of charging and discharging operations; whether storage complements or substi-

tutes other resources hinges on the operational pairs involved and whether executing these pairs is
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constrained by charging or discharging. In addition, a storage operation pair that seems to incur a

loss may still be part of the optimal strategy to facilitate other pairs of storage operations.

The key investment relations we have identified are: 1) storage and renewables are substitutes

in meeting peak demand; 2) storage complements renewables by storing excess renewable output; 3)

renewables (solar in particular) complement battery by compressing the peak period, making it easier

for battery to displace flexible capacity; 4) when all resources are jointly optimized, the combined

complementary effects in 2) and 3) are often stronger than the substitution effect in 1), resulting in

synergies between renewable and storage that together substitute flexible capacity.

These investment relations have important implications for practice. As the government stimu-

lates renewable or storage investment, the impact on different regions and utilities are bound to be

different. In areas where renewable penetration is low and flexible capacity is difficult to be displaced

due to low fuel costs, stimulating investment in storage or renewable can discourage each other due

to their substitution effect (they compete in meeting the peak demand). In such situations, policy

makers should be aware of the potential negative impact of renewable subsidies on storage investment

and vice versa. On the other hand, our research also informs the government, utilities, and investors

that this negative effect between renewable and storage is short-lived. As either investment cost

declines, storage and renewables can complement each other in shaving the peak demand and thus

reducing the need for flexible capacity. Our research also clarifies a myth that storage helps renewable

energy only in storing excess renewable generation. Although that is an important source of storage

value, when there is little excess renewable energy, storage can still cooperate with renewables to

effectively displace fossil energy generation.

Our analysis gives rise to a few future research directions. First, our model currently has two con-

ventional energy sources: flexible and import. In reality, different generators have different marginal

cost levels; the resulting optimal storage operating policy can involve more thresholds. In such a

case, the storage decomposition method continues to work, but it will result in more types of storage

operations, leading to more intricate investment relations. Second, we consider only a one-time in-

vestment in this paper. In reality, as the cost of resources gradually declines, a dynamic investment

model is needed to optimize the timing of investments.
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Online Supplements

A. Reflecting Boundary Approach

One of the challenges in solving the optimal control problem in (12) is handling the state boundary constraint

bt ∈ [0, B] in (5), which requires us to derive boundary conditions satisfied by the value function; see Chapter

II of Fleming and Soner (2006). In this appendix, we use reflecting boundaries to reformulate the optimal

control problem in (12). The new formulation constructs two reflecting processes to regulate the storage level

so that this state constraint is automatically satisfied. The additional optimality condition imposed on the

two reflecting processes allows us to derive the boundary conditions of the HJB equation, stated in Lemma 2

in the paper.

The reflecting boundary method essentially handles the state constraint bt ∈ [0, B] by constructing two

reflecting processes. These reflecting processes ensure that the storage level stays within [0, B] by “nudging”

the storage process to stay on the boundary if it is about to drift out of the boundary. Such reflecting

boundaries always exist and are unique for continuous paths; see Chapter 2 of Harrison (1990). The amount

of nudge has intuitive interpretation, which we will explain after the reformulation below.

inf
{q̃Ft ,q̃Bt ,t≥0}

lim
s→∞

1

s
E
[∫ s

0

(
cF q̃Ft + ξ

(
Dt − yRRt − q̃Ft + ψ(q̃Bt )

)+)
dt+ ξIs

]
, (A.1)

s.t. (2), (3), (5),

db̃t = q̃Bt dt+ dIt − dUt, b̃0 = b0 ∈ [0, B], (A.2)

q̃Ft ∈ [0, yF ] and q̃Bt ∈
[
− yBout, αy

B
in

]
, (A.3)

It and Ut are increasing and continuous with I0 = U0 = 0, (A.4)∫ ∞

0

b̃t dIt = 0,

∫ ∞

0

(B − b̃t) dUt = 0. (A.5)

Compared to the formulation in (12), we construct two reflecting processes It and Ut in the new formula-

tion. The storage state equation (4) is replaced by (A.2). The two reflecting processes It and Ut only change

when the storage level hits the two boundaries. The state constraint (5) is supplemented by (A.4)-(A.5). The

two reflecting processes It and Ut constructed from conditions (A.4)-(A.5) ensure that the regulated storage

level b̃t always satisfies the state constraint (5).

For a given policy {(q̃Ft , q̃Bt ) : t ≥ 0}, the processes It and Ut regulate the process b̃t as follows. The first

(resp. second) integral constraint in (A.5) allows It (resp. Ut) to increase only when b̃t = 0 (resp. b̃t = B).

Thus, if b̃t ∈ (0, B), then dIt = dUt = 0 and b̃t is solely driven by q̃Bt . When b̃t reaches 0, q̃Bt can still be

negative, while It increases at the same rate as the negative part of q̃Bt to ensure that b̃t does not drop below

0 (i.e., battery cannot be overdrafted). Thus, the process It can be interpreted as the cumulative amount of

energy that must be imported to prevent overdrafting the storage under the policy {(q̃Ft , q̃Bt ) : t ≥ 0}. Hence,
a cost ξIs is added in the objective in (A.1).

On the other hand, when b̃t reaches B, the control q̃Bt can still be positive, while Ut increases at the same

rate as the positive part of q̃Bt to ensure that b̃t does not exceed B (i.e., battery does not get overcharged).

Intuitively, when the storage is full but there is still excessive renewable energy, we would wish to store it

(hence q̃Bt > 0) but q̃Bt > 0 will not raise the storage level above B, i.e., the excess energy that we wish to
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charge is actually wasted. Thus, the process Ut represents the cumulative amount of renewable energy we

intend to store under policy {(q̃Ft , q̃Bt ) : t ≥ 0} but is actually curtailed because the battery is full.

The following lemma shows that we can obtain an optimal policy for the original formulation (12) by

solving the new formulation.

Lemma A.1. The Brownian control problem stated in (A.1)-(A.5) is equivalent to the formulation (12) in

the following sense:

(i) Every feasible policy for (12) is a feasible policy for (A.1)-(A.5) with the same cost and with It = 0 and

Ut = 0 for all t ≥ 0.

(ii) Every optimal policy for (A.1)-(A.5) yields a feasible policy for (12) with the same cost. Specifically, if

(q̃Ft , q̃
B
t ) with associated reflecting processes It and Ut is an optimal policy for (A.1)-(A.5), then (q̃Ft , q̃

B
t + I ′t−

U ′
t) is an optimal policy for (12).

Lemma A.1(i) implies that the minimum cost of (A.1) is no higher than that of (12). Part (ii) then states

if a policy achieves the minimum cost of (A.1), we can construct a policy for (12) to achieve the same cost.

Therefore, solving (A.1)-(A.5) is equivalent to solving (12).

Since the boundary condition is automatically satisfied with the two reflecting process, the reformulated

problem in (A.1)-(A.5) using reflecting boundaries has state-independent feasible range of the control variables:

(q̃Ft , q̃
B
t ) ∈ U ≡ [0, yF ] × [−yBout, αy

B
in ]. (In (12), the constraints bt ∈ [0, B] render the feasible controls to be

state dependent.) In addition, the reflecting processes It and Ut impose additional conditions that the optimal

value function needs to satisfy. This allows us to write down the Hamilton-Jacob-Bellman (HJB) equation as

well as the boundary conditions that the value function satisfies, as given in Lemma 2 in the paper.

Proof of Lemma A.1: (i) It is straightforward to see that every feasible policy for (12) is feasible for (A.1)-

(A.5) with It = Ut = 0 for all t ≥ 0. In addition, the two problems yield the same cost since It = 0 adds no

cost to the objective in (A.1).

(ii) It follows from Chapter 2.4 of Harrison (1990) that, for any given feasible solution (q̃Bt , q̃
F
t ) to (A.1)-(A.5)

there exist unique It and Ut that satisfy equations (5), (A.2), (A.4), and (A.5).

Let I ′t =
(
q̃Bt
)− Ib̃t=0 and U ′

t =
(
qBt
)+ Ib̃t=B , where IA is an indicator function that equals one if A is true

and equals zero otherwise, x− = max(0,−x) and x+ = max(0, x). Let

It =

∫ t

0

I ′s ds and Ut =

∫ t

0

U ′
s ds.

It is easy to verify that the constructed It and Ut satisfy equations (A.2) and (A.4)-(A.5).

We now construct a policy that is feasible for (12). Let qFt = q̃Ft and qBt = q̃Bt + I ′t − U ′
t for t ≥ 0. Then

it follow from (A.2) that bt = b̃t for all t ≥ 0. Thus, the two systems have the same dynamics. We will

complete the proof by showing that the two systems also yield the same cost if the policy (q̃Bt , q̃
F
t ) is optimal.

We consider the following three cases:

If I ′t = U ′
t = 0, then the two systems incur the costs at the same rate because the operating decisions in

both systems are identical.

If I ′t > 0 and U ′
t = 0, it implies that q̃Bt < 0 and b̃t = 0. In this case, qFt = q̃Ft and qBt = q̃Bt + I ′t.

To show that the two systems incur the costs at the same rate, we show that ∆+
t = ∆̃+

t + I ′t, where ∆̃t =

2
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Dt−yI −yRRt− q̃Ft −ψ(q̃Bt ) and ∆t = Dt−yI −yRRt−qFt −ψ(qBt ). It follows from qFt = q̃Ft and qBt = q̃Bt +I ′t

that ∆t = ∆̃t + I ′t.

To show that ∆+
t = ∆̃+

t + I ′t, it suffices to show that ∆̃t ≥ 0. We show this by contradiction. Suppose

that ∆̃t < 0. If we replace q̃Bt by q̃Bt + ϵ for a small ϵ > 0 such that ∆̃t + ϵ < 0 and q̃Bt + ϵ < 0, then the

system incurs the cost at a rate of q̃Ft + (q̃Bt + ϵ)− < q̃Ft + (q̃Bt )−. This contradicts to the assumption that the

given policy is optimal.

If I ′t = 0 and U ′
t < 0, it implies that q̃Bt > 0 and b̃t = B. To show that the two systems incur the costs at

the same rate, we show that ∆+
t = ∆̃t. Since ∆t = ∆̃t − U ′

t , it suffices to show that ∆̃t ≤ 0. We show this

by contradiction. Suppose that ∆̃t > 0. If we replace q̃Bt by q̃Bt − ϵ for a small ϵ > 0 such that ∆̃t − ϵ/α > 0

and q̃Bt − ϵ > 0, then the system incurs the cost at a rate of q̃Ft + ∆̃t − ϵ/α < q̃Ft + ∆̃t. This contradicts the

assumption that the given policy (q̃Bt , q̃
F
t ) is optimal.

In sum, the two systems incur the costs at the same rate under all cases for all t ≥ 0 if the given policy

(q̃Bt , q̃
F
t ) is optimal.

B. The Discrete-Time Model

This section formulates and analyzes a discrete-time model to demonstrate the conciseness and usefulness of

the continuous-time model in the paper.

First, we present the discrete-time counterpart of the continuous-time model in (12), highlighting only the

elements that differ. Let t ∈ T := {0, 1, 2, . . . } index time periods, and the length of each period is δ > 0.

Thus, period t is the time interval [tδ, (t + 1)δ). Demand in period t is Dtδ. That is, Dt is still measured in

MW, so is all the power capacities. Similarly, renewable output in period t is Rtδ. The stochastic components

of the demand and renewable generation, dt and rt, are Marokovian processes characterized by the Markov

kernels pd(x, y) and pr(x, y), respectively. In particular,

P(rt+1 ∈ A|rt = x) =

∫
y∈A

kr(y, x) dy and P(dt+1 ∈ A|dt = x) =

∫
y∈A

kd(y, x) dy. (B.1)

At the beginning of each period t, the utility observes Dt, Rt, and the stored energy level bt, and then

decides the flexible generation rate qFt , renewable generation rate qRt , and the storage charging/discharging

rate qBt in period t. The stored energy level evolves according to

bt+1 = bt + qBt δ. (B.2)

We consider a discrete-time analogue of the model in (10). Using the same procedure described in Section 4.1,

we can transform the problem into the discrete-time version of the problem in (12):

C(yR, yF , B, cF ) = inf
{qFt ,qBt ,t∈T }

lim
s→∞

1

sδ
E

[
s∑

t=0

(
cF qFt + ξ

(
Dt − yRRt − qFt + ψ(qBt )

)+)
δ

]
, (B.3)

s.t. state equations: (2), (B.1), (B.2),

state constraint: (5),

control constraints: (6), (7).

Next, we derive the Bellman equation that the optimal average cost v = C(yR, yF , B, cF ) and the relative

3
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cost function ϕt(b, r, d) must satisfy: For (bt, rt, dt) ∈ X ,

ϕt(bt, rt, dt) = min
qF∈[0,yF ],qB∈[qB

t
,q̄Bt ]

{
cF qF + ξ

(
D̃t + ψ(qB)− qF

)+ − v + ϕ̃t(bt + qBδ, rt, dt)
}
, (B.4)

where D̃t = fd(Dt, dt)−yRfr(Rt, rt), q
B
t
= max(−yBout,−bt/δ) and q̄Bt = min((B−bt)/δ, αyBin ), and ϕ̃t(b, r, d) =

E[ϕt+1(b, rt+1, dt+1)|rt = r, dt = d]. The definition of the function ϕ̃t fixes the value of the battery energy level

b in period t+ 1 while taking the expectation conditional on the values of rt and dt in period t. Similarly, we

state a lemma that characterizes the important properties of the relative cost function.

Lemma 3’. ϕt(b, r, d) is convex and decreasing in b, for any given (t, r, d). Therefore, ϕt(b, r, d) is differentiable

almost everywhere with ∂ϕt(b, r, d)/∂b ∈ [−ξ/δ, 0].

We omit the proof of Lemma 3’ because it follows the same but tedious argument in the proof of Lemma

3. Thus, we have the following immediate properties of ϕ̃(·).

Corollary 2. ϕ̃t(b, r, d) is convex and decreasing in b, for any given (t, r, d). Therefore, ϕ̃t(b, r, d) is differen-

tiable almost everywhere with ∂ϕ̃t(b, r, d)/∂b ∈ [−ξ, 0].

We provide the solution to the Bellman equation for comparison; see Appendix F for the detailed proof.

To facilitate stating the proposition, we write ∂ϕ̃t(bt, rt, dt)/∂b as ∂ϕ̃t/∂b in short. In addition, define two

constants b̄t(r, d) and bt(r, d) as follows:

b̄t(r, d) = sup

{
b ∈ [0, B] :

∂ϕ̃t(b, r, d)

∂b
= −cF

}
,

bt(r, d) = inf

{
b ∈ [0, B] :

∂ϕ̃t(b, r, d)

∂b
= −c

F

α

}
.

Proposition 1’. The optimal dispatch rate qF
∗

t and charging rate qB
∗

t satisfy: Given the system state

(bt, rt, dt) ∈ X , qB
∗

t = (qB
t
∨ q̂B) ∧ q̄Bt and qF

∗
= (D̃ + ψ(qB

∗

t ))+ ∧ yF , where

(a) D̃ > yF :

q̂B =

 yF − D̃, if − ξ ≤ ∂ϕ̃t

∂b < −cF ,
(yF − D̃) ∧ [−(D̃ ∧ ((b− b̄t)/δ)], if − cF ≤ ∂ϕ̃t

∂b ≤ 0.
(B.5)

(b) 0 < D̃ ≤ yF :

q̂B =


((bt − b)/δ) ∧ (α(yF − D̃)), if − ξ ≤ ∂ϕ̃t

∂b < − cF

α ,

0, if − cF

α ≤ ∂ϕ̃t

∂b < −cF ,
−(((b− b̄t)/δ) ∧ D̃), if − cF ≤ ∂ϕ̃t

∂b ≤ 0.

(c) D̃ ≤ 0:

q̂B =

 [(bt − b)+/δ] ∧ (α(yF − D̃)), if − ξ ≤ ∂ϕ̃t

∂b < − cF

α ,

−αD̃, if − cF /α ≤ ∂ϕ̃t

∂b ≤ 0.

Comparing the optimal solution provided in Proposition 1 and Proposition 1’, we find that the continuous-

time model has a simpler structure in its solution. There are two key differences between the solutions of the

discrete-time and continuous-time models. The first one is that the solution of the discrete-time model suggests
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that the battery level stays in the same region next period. If the suggested discharging/charging rate moves

the battery level to a different region, the optimal solution is adjusted so that the battery level stays on the

boundary between two regions. For example, in case (a) when net demand D̃ is high, we charge the battery to

meet the unmet demand. The minimum charging rate (without considering the maximum discharging rate) is

|yF − D̃|, which the rate to meet the extra demand after exhausting all energy sources. However, the battery

may be preferable than the flexible source if the marginal value of energy in the battery |∂ϕ̃t/∂b| is low. In

this case, we may use the battery first to meet all the net demand D̃. However, discharging the battery at

rate D̃ may bring down the energy level in the battery to the region where the flexible source is preferred.

Therefore, to keep the energy level in the same region, we should discharge at rate either |− (D̃∧ [(b− b̄t))/δ]|
or the minimum discharging rate |yF − D̃|, whichever is larger. Figure B.1 shows that the solution of the

continuous-time model has a bang-bang structure while that of the discrete-time model smooths out the rate

changes at the boundary. As the period length δ becomes smaller and smaller, the solution of the discrete-time

model converges to that of the continuous-time model.

Figure B.1: Optimal solutions in the continuous-time and discrete-time models

The second difference between the solutions of the discrete-time and continuous-time models is the behavior

at the boundary. In the continuous-time model, we only impose constraints on the charging rate qBt when the

battery level hits the boundary zero or B as shown in Theorem 1. The constraint requires that we never charge

when the battery is full and never discharge when the battery is empty. However, the boundary constraint in

the discrete-time model may affect the solution when the battery level is nearly full or empty. The boundary

constraint is accounted in the definitions of the discharging and charging limits qB
t
and q̄Bt . To be specific, the

battery constraint starts to affect the optimal solution when bt < yBoutδ and bt > B − αyBin δ. The maximum

amount that is allowed to charge/discharge depends on current battery level.
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C. Optimal Investments of the Special Case in Section 5.1

This appendix solves the special case under Assumption 1. Proposition C.1 provides explicit expressions for

the optimal average operating cost by solving the HJB equation in Lemma 2 under given resources capacities

(yR, yF , B).

Proposition C.1. Under Assumption 1, the average operating cost defined in (10) is given as follows:

(i) If B ≤ min
(
QCR, QDI

)
,

C(yR, yF , B, cF ) =
cFQDF + ξ(QDI −B)

t0
.

(ii) If QCR ≤ QDI and B ≥ QCR,

C(yR, yF , B, cF ) =


cFQDF+ξ(QDI−B)+cF (B−QCR)/α

t0
, if B ≤ min

(
QCR +QCF, QDI

)
,

cFQDF+ξ(QDI−QCR−QCF)++cF (QCF∧(QDI−QCR))/α
t0

, if B ≥ min
(
QCR +QCF, QDI

)
.

(iii) If QDI ≤ QCR and B ≥ QDI,

C(yR, yF , B, cF ) =


cFQDF−cF (B−QDI)

t0
, if B ≤ min

(
QCR, QDI +QDF

)
,

cF (QDI+QDF−QCR)+

t0
, if B ≥ min

(
QCR, QDI +QDF

)
.

In addition, if {cFm : m = 1, . . . ,M} has a stationary distribution represented by random variable CF , the

discounted operation cost defined in (11) is given by C(yR, yF , B) = At0E[C(yR, yF , B,CF )], where the expec-

tation is taken on CF and A is the constant given in Theorem 2.

Proof. We solve the optimal control problem for given capacities yR, yF and B. We seek to find the gain and

the bias function for t ∈ [s4, t0 + s4). Without stochasticity, we can drop r and d in the state descriptor and

let (t, b) denote the state of the system. Moreover, the HJB equation in (13) simplifies to the following: For

b ∈ (0, B) and t ∈ [s2, t0 + s2),

v − ∂ϕ(t, b)

∂t
+H

(
t, b,

∂ϕ(t, b)

∂b

)
= 0 with

∂ϕ(t, 0)

∂b
= −ξ and

∂ϕ(t, B)

∂b
= 0, (C.1)

where

H(t, b, p) = − inf
qF∈[0,yF ],qB∈R

{
ζ(t, b, qF , qB) + +pqB

}
,

where ζ(t, b, qF , qB) = cF qF + ξ(D̃t − qF + ψ(qB))+. By substituting the solution in Proposition 1 with

yBin = yBout = +∞, we obtain that: For t ∈ [s4, t0 + s1) where D̃t < 0,

H(t, b, p) =


+∞, if p < − ξ

α ,

−cF yF − αp(yF − D̃t), if − ξ
α ≤ p ≤ − cF

α ,

αpD̃t, if − cF

α ≤ p ≤ 0,

+∞, if p > 0,

(C.2)
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for t ∈ [s1, s2) ∪ [s3, s4) where 0 < D̃t < yF ,

H(t, b, p) =



+∞, if p < −ξ,
−cF yF − αp(yF − D̃t), if − ξ ≤ p ≤ − cF

α ,

−cF D̃t, if − cF

α ≤ p ≤ −cF ,
pD̃t, if − cF ≤ p ≤ 0,

+∞, if p > 0,

(C.3)

and for t ∈ [s2, s3) where D̃t ≥ yF ,

H(t, b, p) =


+∞, if p < −ξ,
−cF yF − p(yF − D̃t), if − ξ ≤ p ≤ −cF ,
pD̃t, if − cF ≤ p ≤ 0,

+∞, if p > 0.

(C.4)

If there is a function ϕ(t, b) ∈ C1 ([s2, t0 + s2)× [0, B]) and a constant v ≥ 0 satisfying equation (C.1), then

we have C(0, yR, B, cR) = v where C1(·) is the space of continuously differentiable functions. Unfortunately,

this problem does not have a classical solution, i.e., a solution that is continuously differentiable functions. In

what follows, we will prove by construction. Note that the bias function is piece-wise differentiable. When the

bias function is differentiable, it has to satisfy condition (C.1). Thus, we construct a parameterized function

that is continuous and piece-wise differentiable, and satisfies condition (C.1). Then, we use the the continuity

conditions to find the parameters for different scenarios. Lastly, we verify from the first principle that the

constructed function is actually the bias function and the resulting charging/discharging policy is optimal.

In what follows, we first construct a function ϕ(t, b) that satisfies (C.1) at differentiable points. To facilitate

the analysis to follow, the define the following functions:

y1(t, τ) =

(
ξ − cF

α

)
αyF (t− τ) + ξ

∫ τ

t

αD̃s ds,

y2(t, τ) = cF
∫ τ

t

D̃s ds,

y3(t, τ) = (ξ − cF )yF (t− τ) + ξ

∫ τ

t

D̃s ds,

z1(t, τ) = −
∫ τ

t

(
yF − D̃s

)
ds,

z2(t, τ) =

∫ τ

t

D̃s ds.

Also, we summarize the important properties of functions z1 and z2 as follows: (z-property)

(i) For t ∈ [s4, t0 + s1) and τ = t0 + s1, z1(t, τ), z2(t, τ) and z1(t, τ)− z2(t, τ) increase in t .

(ii) For t ∈ [t0 + s1, t0 + s2) and τ = t0 + s2, z1(t, τ) increases in t while z2(t, τ) decrease in t.

(iii) For t ∈ [t0 + s2, t0 + s3) and τ = t0 + s3, z1(t, τ), z2(t, τ) and z2(t, τ)− z1(t, τ) decrease in t.

(iv) For t ∈ [t0 + s3, t0 + s4) and τ = t0 + s4, z1(t, τ) increases in t while z2(t, τ) decrease in t.

Now we define a parameterized function ϕ(t, b) for t ≥ 0 and b ∈ [0, B]. The function ϕ is divided into

four cases. Within one case, ϕ is differentiable. The boundaries of the four cases are the non-differentiable.

We also define the charging/discharging policies, denoted by π∗, for each cases. For t ∈ [s4, t0 + s1) and
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a1 ≤ a2 ≤ a3 ≤ B, let

ϕ(t, b) = vt+


A1 − ξb+ y1(t, t0 + s1), if b ≤ a1 + αz1(t, t0 + s1),

A2 − cF

α b+ y2(t, t0 + s1), if a1 + αz1(t, t0 + s1) < b ≤ a2 + αz2(t, t0 + s1),

cFa3 − cF b+ αy2(t, t0 + s1), if a2 + αz2(t, t0 + s1) < b ≤ a3 + αz2(t, t0 + s1),

0, if b > a3 + αz2(t, t0 + s1),

(C.5)

where A1 =
(
ξ − cF

α

)
a1 +

(
cF

α − cF
)
a2 + cFa3 and A2 =

(
cF

α − cF
)
a2 + cFa3. The first case is the CF+CR

region, where the second and cases are the CR region. The last case is when the stored energy is too much

and has a margin of zero. There is no charging in this region. For t ∈ [t0 + s1, t0 + s2) and constants such

that b1 ≤ b2 ≤ b3 and b1 ≤ B and b3 ≥ 0, let

ϕ(t, b) = vt+


B1 − ξb+ y1(t, t0 + s2), if b ≤ b1 + αz1(t, t0 + s2),

B2 − cF

α b+ y2(t, t0 + s2), if b1 + αz1(t, t0 + s2) ≤ b ≤ b2,

cF b3 + b4 − cF b+ y2(t, t0 + s2), if b2 < b ≤ b3 + z2(t, t0 + s2),

b4, if b ≥ b3 + z2(t, t0 + s2),

(C.6)

where B1 =
(
ξ − cF

α

)
b1 +

(
cF

α − cF
)
b2 + cF b3 + b4 and B2 =

(
cF

α − cF
)
b2 + cF b3 + b4. The first three cases

are the CF, no charging/discharging, and DF regions, respectively. The last regions are also DF regions. For

t ∈ [t0 + s2, t0 + s3) and constants such that 0 ≤ c1 ≤ c2 ≤ c3, let

ϕ(t, b) = vt+


C1 − ξb+ y3(t, t0 + s3), if b ≤ c1 + z1(t, t0 + s1),

C2 − cF

α b+ y3(t, t0 + s3), if c1 + z1(t, t0 + s1) < b ≤ c2 + z1(t, t0 + s1),

cF c3 + c4 − cF b+ y2(t, t0 + s3), if c2 + z1(t, t0 + s1) < b ≤ c3 + z2(t, t0 + s3),

c4, if b > c3 + z2(t, t0 + s3),

(C.7)

where C1 =
(
ξ − cF

α

)
c1 +

(
cF

α − cF
)
c2 + cF c3 + c4 and C2 =

(
cF

α − cF
)
c2 + cF c3 + c4. The firs two cases

are the DI regions, where the third cases and fourth cases are the DI+DF region. For t ∈ [t0 + s3, t0 + s4) and

constants such that d1 ≤ d2 ≤ d3 and d1 ≤ B, d3 ≥ 0, let

ϕ(t, b) = vt+


D1 − ξb+ y1(t, t0 + s4), if b ≤ d1 + αz1(t, t0 + s4),

D2 − cF

α b+ y2(t, t0 + sr), if d1 + αz1(t, t0 + s4) < b ≤ d2,

cF d3 + d4 − cF b+ y2(t, t0 + s4), if d2 ≤ b ≤ b3 + z2(t, t0 + s4),

d4, if b > d3 + z2(t, t0 + s4),

(C.8)

where D1 =
(
ξ − cF

α

)
d1 +

(
cF

α − cF
)
d2 + cF d3 + d4 and D2 =

(
cF

α − cF
)
d2 + cF d3 + d4. The charg-

ing/discharging policy is the same as the one in [t0 + s1, t0 + s2).

Note that the function ϕ has four cases for different values of b. The continuity conditions simply require

that the boundaries of the four cases match at t = s4, t0 + s1, t0 + s2, t0 + s3 if the boundaries are in [0, B].

Moreover, by the z-properties, the boundaries of are well-defined, i.e., the boundaries never cross. Since
∂y2

∂t = α∂y2

∂t for t = t0+ s1 and t = t0+ s4 and ∂y2

∂t = ∂y3

∂t for t = t0+ s2 and t = t0+ s3, ϕ(t, b) is differentiable

for t = s1, s2, s3, s4 if b is not on the boundaries. The last observation is that once the trajectory of b hits one

of the boundaries. The trajectory of b will move along the boundaries under policy π∗.

Next, we find suitable parameters and v ≥ 0 such that ϕ(t, b) is continuous for b ∈ [0, B]. We want to note

that the choice of the parameters may not be unique. Note that ϕ is a periodic function, so we require that
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ϕ(s4, b) = ϕ(t0 + s4, b) for all b ∈ [0, B]. In addition, we define the following constants:

QCF
1 =

∫ s2

s1

α
(
yF − D̃t

)
dt, QCF

2 =

∫ s4

s3

α
(
yF − D̃t

)
dt, QCF

3 = αyF (t0 + s1 − s4),

and

QDF
1 =

∫ s2

s1

D̃t,dt, QDF
2 =

∫ s4

s3

D̃t dt, QDF
3 = yF (s3 − s2).

The parameters are given as follow:

1. B ≤ min
(
QCR, QDI

)
. a1 = B − QCF

1 , a2 = a3 = B, b1 = b2 = b3 = B, c1 = c2 = 0, c3 = QDF
2 ,

d2 = d3 = 0, and d1 = B − QCR − QCF
1 − QCF

3 . Moreover, we have that b4 = cFQDF
1 and c4 = d4 =

cFQDF + ξ(QDI −B). By the continuity at s4, we have that v = [cFQDF + ξ(QDI −B)]/t0.

2. QCR ≤ QDI and B ≥ QCR. In this case, we have a2 = a3 = B, b2 = b3 = B, c2 = B − QCR,

c3 = B −QCR +QDF
2 , and d2 = d3 = B −QCR. There are a few sub-cases.

(a) QCR ≤ B ≤ min
(
QCR +QCF, QDI

)
. We have a1 = B − QCF

1 , b1 = B, c1 = 0, d1 = B − QCR −
QCF

1 −QCF
3 . Moreover, we have v = (cFQDF + ξ(QDI −B) + cF (B −QCR)/α)/t0.

(b) QDI ≤ QCR +QCF and B ≥ QDI. We have a1 = QDI −QCF
1 , b1 = QDI, c1 = 0, d1 = QDI −QCR −

QCF
1 −QCF

3 , . Moreover, we have v = (cFQDF + cF (QDI −QCR)/α)/t0.

(c) QCR +QCF ≤ QDI and B ≥ QCR +QCF. We have a1 = B −QCF
1 , b1 = B, c1 = B −QCR −QCF,

d1 = B −QCR −QCF
1 −QCF

3 and v = (cFQDF + ξ(QDI −QCR −QCF) + cFQCF/α)/t0.

3. QDI ≤ QCR and B ≥ QDI. In this case, we have a1 = QDI−QDF
1 , a2 = QDI, b1 = b2 = QDI, c1 = c2 = 0,

d1 = d2 = 0. There are three sub-cases:

(a) QDI ≤ B ≤ min
(
QCR, QDI +QDF

)
. a3 = B, b3 = QDI +QDF

2 +QDF
3 , c3 = QDF

2 and d3 = 0. We

have v = (cFQDF − cF (B −QDI))/t0.

(b) QCR ≤ QDI + QDF and B ≥ QCR. We have a3 = B, b3 = B − QCR + QDI + QDF
2 + QDF

3 ,

c3 = B −QCR +QDF
2 , and d3 = B −QCR. We also have v = cF (QDI +QDF −QCR)/t0.

(c) QDI + QDF ≤ QCR and B ≥ QDI + QDF. We have a3 = QDF + QDI, b3 = QDI + QDF
2 + QDF

3 ,

c3 = QDF
2 and d3 = 0. We also have b4 = c4 = d4 = v = 0.

Lastly, we verify that the constructed function ϕ(t, b) and the constant v are actually the bias function and

the gain. First, we use b∗t to denote the trajectory under the policy π∗ = (qF∗ (t, b), q
B
∗ (t, b). The following

always hold: for t ≥ t0 and b∗t0 = b0,

ϕ(t0, b0)− ϕ(t, b∗t ) = −v(t− t0) +

∫ t

t0

ζ
(
t, b∗s, q

F
∗ (s, b

∗
s), q

B
∗ (s, b∗s

)
ds.

When b∗t is not moving along any of the non-differentiable boundaries of the function ϕ, this follows immediately

from condition C.1. By comparing both sides of the equation, we note that this also holds if the trajectory

b∗t is moving along one of the non-differentiable boundaries. Suppose there is a policy π̃ = (q̃F (t, b), q̃B(t, b)).

The trajectory under policy π̃ is b̃t with b̃t0 = b0 . For t ≥ t0, define a function M̃(t)

M(t) =

∫ t

t0

ζ(s, b̃s, q̃
F (s, b̃s), q̃

B(s, b̃s)) ds+ ϕ(t, b̃t)− v(t− t0).
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We first consider the case when b̃s does not move along the non-differentiable boundaries in [t0, t]. This M
′(t)

exists for only finite points. It follows from (C.1) that for s ∈ [0, t0] and M
′(s) exists,

M ′(s) = ζ(s, b̃s, q̃
F (t, b̃t), q̃

B(t, b̃t)) +
∂ϕ(t, b̃t)

∂t
+
∂ϕ(s, b̃s
∂b

q̃B(s, b̃s) ≥ 0.

Thus, we have that M(t) =
∫ t

0
M ′(s) ds +M(t0) ≥ M(t0). Now we consider the case when b̃s moves along

one of the non-differentiable boundaries of function ϕ in [t0, t]. In this case, the policy π̃ follows π∗ in [t0, t].

Thus, it follows from equation (C) that

M(t) =

∫ t

t0

ζ
(
t, b∗s, q

F
∗ (s, b

∗
s), q

B
∗ (s, b∗s

)
ds+ ϕ(t, b∗t )− v(t− t0)

= ϕ(t0, b0)− ϕ(t, b∗t ) + ϕ(t, b∗t ) = ϕ(t0, b0) =M(t0).

The trajectory of b̃s for general cases can be divided into several periods. Each of the periods can fall into one

of the two cases discussed aforementioned. Thus, we have that M(t) ≥ M(t0). Since ϕ is bounded, we let t

goes to infinity and have the following:

lim
t→∞

M(t)

t− t0
= lim

t→∞

∫ t

t0
ζ(s, b̃s, q̃

F (s, b̃s), q̃
B(s, b̃s))

t− t0
− v ≥ 0.

Thus, we have shown that the average cost under a given policy π̃ is greater than v. And all inequalities become

equations under policy π∗. Letting C(y
R, yF , B, cF ) = v completes the proof. The value of C(yR, yF , B) follows

from equation (11).

Proof of Theorem 2: Using the closed-form expressions for the optimal operating cost in Proposition C.1,

we can find the marginal benefit of the battery capacity (in terms of the marginal reduction of the discounted

cost) as follows:

1. If QCR ≤ QDI,

−∂C(y
R, yF , B)

∂B
=


Aξ, if 0 ≤ B ≤ QCR,

A
(
ξ − E[CF ]

α

)
, if QCR < B ≤ min

(
QCR +QCF, QDI

)
,

0, if B > min
(
QCR +QCF, QDI

)
.

2. If QCR > QDI,

−∂C(y
R, yF , B)

∂B
=


Aξ, if 0 ≤ B ≤ QDI,

AE[CF ], if QDI < B ≤ min
(
QCR, QDI +QDF

)
,

0, if B > min
(
QCR, QDI +QDF

)
.

Then, the optimal investment in Theorem 2 follows immediately.
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D. Data and Estimated Model Parameters for Numerical Analysis

Figure D.1: Florida Power & Light solar project sites
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Table D.1: Summary statistics

Monthly natural gas
price ($/MBtu)

Hourly demand
(MWh)

Solar capacity factor
under clear sky

Solar capacity factor
on the ground

summer winter summer winter summer winter summer winter

Mean 4.099 4.126 17381.9 12129.0 0.3202 0.2774 0.2414 0.1936

Std.dev. 2.205 1.850 3905.5 2434.1 0.3802 0.3535 0.2918 0.2526

q1 2.798 2.805 13740 9968.5 0 0 0 0

q2 (median) 3.405 3.580 17366 12340 0.0690 0.0265 0.0499 0.0114

q3 4.576 5.208 20686 13701 0.6888 0.6026 0.5075 0.4112

No. of obs. 90 90 2915 2184 2208 1440 2208 1440

Inflexible output from nuclear and coal is 4113 MW.

Table D.2: Estimated distribution of the natural gas price

Summer: $4.099/MBtu on average

Price ($/MBtu) 1.912 2.537 2.815 2.955 3.374 3.946 4.394 5.865 9.091

probability 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9

Winter: $4.126/MBtu on average

Price ($/MBtu) 2.013 2.531 2.844 3.208 3.564 3.974 4.731 6.383 7.890

probability 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9
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Table D.3: Estimates for the solar output model

Solar output model: Rt = Rt
ert

1 + ert
. Summer parameters are estimated using data from June

to August 2020; winter parameters are estimated using data from January to February 2020.
Rt is the clear-sky capacity factor averaged over the same hour of day for each season.

Summer
(day light

saving time)
Winter

Clear-sky

capacity factor

Rt

Hour of day

0 0 0

1 0 0

2 0 0

3 0 0

4 0.00077 0

5 0.00935 0.00015

6 0.03865 0.06313

7 0.15537 0.25906

8 0.38106 0.48837

9 0.60729 0.69485

10 0.79765 0.84658

11 0.93243 0.92931

12 1.00000 0.93293

13 0.99368 0.85722

14 0.91414 0.71219

15 0.76996 0.51123

16 0.57327 0.28340

17 0.34483 0.07942

18 0.12692 0.00003

19 0.03250 0

20 0.00693 0

21 0.00044 0

22 0 0

23 0 0

Average 0.32022 0.27741

Random component
rt = r̄ + et,

et+1 = ρet + εt

mean r̄ 1.10001 0.77348

Autoregressive coef. ρ 0.82548 0.87455

Std.dev. of error εt 0.69563 0.35432
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Table D.4: Estimates for the demand model

Demand model: logDt = Dt+dt. We use the hourly FPL’s demand data from June to September
2020 to estimate the parameters in summer and use the data from December 2019 to February
2020 to estimate the parameters in winter.

Summer Winter

Deterministic
component Dt

is the sum of
day-of-week and

hour-of-day
components

Day of week

Sun 9.62545 9.21082

Mon 9.65529 9.27153

Tue 9.66051 9.28676

Wed 9.64463 9.29618

Thu 9.65578 9.28125

Fri 9.67026 9.25610

Sat 9.63573 9.21338

Hour of day

0 0 0

1 -0.06798 -0.07010

2 -0.13552 -0.13290

3 -0.18580 -0.16953

4 -0.21995 -0.18510

5 -0.23346 -0.17234

6 -0.21783 -0.10852

7 -0.18653 -0.00565

8 -0.14153 0.06945

9 -0.03918 0.14367

10 0.07291 0.20422

11 0.16952 0.24397

12 0.24719 0.26527

13 0.30334 0.28300

14 0.33901 0.29260

15 0.35554 0.29567

16 0.35767 0.29507

17 0.34984 0.28933

18 0.33162 0.29464

19 0.29642 0.32099

20 0.24962 0.29349

21 0.21864 0.24262

22 0.16413 0.17341

23 0.09141 0.09651

Random component
dt+1 = ρdt + εt

Autoregressive coef. ρ 0.92628 0.91423

Std.dev. of error εt 0.03061 0.03900
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E. Additional Numerical Analysis on Investment Relations

In this section, we run the same portfolio optimization as in Figure 7 under different cost parameters: the

natural gas prices are half of the values reported in Table D.2 and the investment cost for flexible capacity kF

is increased from $1.17/W (in the paper) to $1.287/W.

The optimal investment portfolios are illustrated in Figure E.1. When the cost of solar capacity is above

(resp. below) $0.8/Wac, we observe a distinct substitution (resp. complementary) effect between solar and

battery capacities. This substitution effect is more pronounced than what is observed in Figure 7 of the paper.

The reasons for the stronger substitution are twofold. First, the lower price of natural gas enhances the

cost-effectiveness of flexible generation, leading to a reduction in the optimal renewable capacity compared

to Figure 7. This decrease in renewable capacity weakens the complementary effect between renewable and

battery, facilitating a more noticeable substitution effect, where renewables and battery compete to meet

peak demand. Second, although battery and solar capacities can jointly displace flexible capacity (the second

complementary effect discussed in the paper), the lower natural gas price coupled with a slightly increased

cost for flexible capacity renders it more difficult to displace flexible capacity. Therefore, in this setting,

the complementary effect is weakened, resulting in a more evident substitution effect between renewable and

battery capacities when kR > $0.8/Wac in Figure E.1.

Figure E.1: Optimal capacity investment

Battery cost: kB = $0.2/Wh

(a) Solar capacity yR
∗
(GW) (b) Battery capacity B∗ (GWh) (c) Flexible capacity yF

∗
(GW)
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F. Proofs

Proof of Lemma 1: We will prove the following two statements:

(i) The average cost C(yR, yF , B, cF ) in (10) can be determined by the following problem with a modified

objective and without constraint (9):

C(yR, yF , B, cF ) = inf
π

lim
s→∞

1

s
E
[∫ s

0

(
cF qFt + ξ∆+

t

)
dt

]
, (F.1)

s.t. (2)-(8).

(ii) There exists an optimal control for (F.1) such that renewable energy is fully used: qRt = yRRt.

These two statements essentially transform the original problem of simultaneously deciding three controls

in (10) into a simpler auxiliary problem in (F.1), in which we do not lose optimality by setting qRt = yRRt.

Then, replacing qRt in (F.1) by the full potential renewable output yRRt leads to the problem in (12).

To show (i), note that any feasible policy of problem (10) is also feasible for problem (F.1). Moreover,

since ∆t ≥ 0 under any feasible policy of problem (10), the objectives in (10) and (F.1) are the same under

any feasible policy of problem (10). Therefore, the cost under the optimal policy of (F.1) is no higher than

that in (10) because (F.1) allows for a larger set of feasible policies. To show that the two problems yield the

same optimal cost, it suffices to show that for any optimal policy of (F.1), we can construct a feasible policy

for (10) that yields the same cost as in (F.1).

Let {(qRt
∗
, qFt

∗
, qBt

∗
) : t ≥ 0} be an optimal policy for (F.1). We define π = {(qRt , qFt , qBt ) : t ≥ 0} such

that qRt = min{qRt
∗
, Dt − qFt

∗
+ ψ(qBt

∗
)}, qFt = qFt

∗
, and qBt = qBt

∗
.

First we need to show that π is feasible for (10). Note that the construction ensures ∆t ≥ 0 under policy

π for all t. Thus, if qRt = min{qRt
∗
, Dt − qFt

∗
+ ψ(qBt

∗
)} ≥ 0 for all t, then π is feasible for (10). We show

this by contradiction. Suppose Dt − qFt
∗
+ ψ(qBt

∗
) < 0 for t ∈ [t1, t2]. We will show that we can construct a

new policy π̃ with a lower cost in (F.1), which contradicts to the optimality of (qRt
∗
, qFt

∗
, qBt

∗
) in (F.1). We

use “˜” to denote all the decisions and the associated storage state under the new policy π̃. In addition, let

∆∗
t =

(
Dt − qRt

∗ − qFt
∗
+ ψ(qBt

∗
)
)+

. Since we assume Dt − qFt
∗
+ ψ(qBt

∗
) < 0, we have ∆∗

t = 0 for t ∈ [t1, t2].

We discuss two scenarios.

Scenario 1. If there exists an interval [t3, t4] ⊆ [t1, t2] such that qFt
∗
> 0 in [t3, t4]. Then let q̃Rt = qRt

∗
,

q̃Bt = qBt
∗
for all t, and let q̃Ft = (Dt + ψ(qBt

∗
))+ for t ∈ [t1, t2] and q̃Ft = qFt

∗
for other t. The system has

the same dynamics under policy (qRt
∗
, qFt

∗
, qBt

∗
) and policy π̃. Since q̃Ft ≤ qFt

∗
for all t, the system incurs a

(weakly) lower cost under policy π̃.

Scenario 2. If there exists no such interval [t3, t4], then q
F
t

∗
= 0 for almost all t ∈ [t1, t2]. Thus it follows

from Dt − qFt
∗
+ ψ(qBt

∗
) < 0 and Dt ≥ 0 that qBt

∗
< −Dt ≤ 0 for t ∈ [t1, t2]. Let d > 0 be a small amount.

Define the time t′ as follows:

t′ = sup

{
t ∈ [t1, t2] :

∫ t2

t′
Dsds ≥ d

}
.

Let q̃Ft = qFt
∗
and q̃Rt = qRt

∗
for all t ≤ t2. Let q̃Bt = qBt

∗
for t ≤ t′ and q̃Bt = qBt

∗
+ Ds ∈ [−yBout, 0] for

t ∈ [t′, t2]. Under the new policy, the storage level at time t2 is b̃t2 = bt2 + d. In addition, note that D̃t ≤ 0

and thus ∆̃+
t = (∆∗

t )
+ for all t ∈ [t1, t2]. Next define t′′ as follows:

t′′ = inf

{
t ≥ t2 :

∫ t

t2

min(qF
∗

s + qR
∗

s , yBout + qB
∗

s )ds ≥ d

}
.
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We construct a new policy π̃ for this case as follows. Let

q̃Bt = max(−yBout, q
B
t

∗ − (qFt
∗
+ qRt

∗
)),

q̃Ft =
(
qFt

∗ − α(qBt
∗ − q̃Bt )/2

)+
and q̃Rt = (qRt

∗ − α(qBt
∗ − q̃Bt )/2)+ for t ∈ (t2, t

′′). In addition, let q̃Ft = qFt
∗
,

q̃Rt = qRt
∗
and q̃Bt = qBt

∗
for t ≥ t′′. Under the new policy, q̃Ft ≤ qFt

∗
, ∆̃t ≤ ∆∗

t for t ∈ [t2, t
′′]. In addition,

b̃t′′ − b̃t2 = bt′′ − bt2 − d, which implies b̃t′′ = bt′′ . In sum, under the policy π̃, the system dynamics and rate of

cost incurred to the system are the same as those under the policy (qRt
∗
, qFt

∗
, qBt

∗
) for t ≤ t′ and t ≥ t′′. Note

that q̃Ft ≤ qFt
∗
and ∆̃+

t ≤ (∆∗
t )

+ for t ∈ [t′, t′′]. Thus, the system yields a lower cost under the new policy π̃.

In both scenarios, if Dt − qFt
∗
+ ψ(qBt

∗
) < 0 during interval [t1, t2], we are able to construct a new policy

π̃ which yields a lower cost in (F.1). This contradicts to the fact that (qRt
∗
, qFt

∗
, qBt

∗
) is an optimal policy.

Therefore, Dt − qFt
∗
+ ψ(qBt

∗
) ≥ 0 for all t, and π is feasible for (10).

Next, we show that the cost of (10) under π is the same as that of (F.1) under (qRt
∗
, qFt

∗
, qBt

∗
). Since

qFt = qFt
∗
and qBt = qBt

∗
, the two systems have the same dynamics. We only need to show that the cost rates

of the two systems are the same at any time t. It suffices to show that ∆t = (∆∗
t )

+. In other words, we want

to show that

Dt − qRt − qFt + ψ(qBt ) =
(
Dt − qRt

∗ − qFt
∗
+ ψ(qBt

∗
)
)+

.

Note that if Dt − qRt − qFt +ψ(qBt ) > 0, i.e, qRt
∗ ≤ Dt − qFt

∗
+ψ(qBt

∗
), then qRt = qRt

∗
and the above equation

holds. Otherwise, both sides of the equation are zero. This completes the proof of statement (i).

To show (ii), we show that for any given policy π that solves (F.1), there exists a policy π̂ with a (weakly)

lower cost such that q̂Rt = yRRt. Let q̂Bt = qBt and q̂Ft = qFt . Since the charging/discharging rate remains

the same under the new policy, the system dynamics remain the same as that under the policy π̂. Note that

∆̂t ≤ ∆t and thus ∆̂+
t ≤ ∆+

t under the policy π̂. Thus, the system yields a (weakly) lower cost under the new

policy π̂.

From statements (i) and (ii), we see that the average cost C(yR, yF , B, cF ) in (10) can be determined by

the problem in (12).

To prove the last statement in the lemma, let {(yRRt, q
F
t

∗
, qBt

∗
) : t ≥ 0} be an optimal policy for (F.1),

which implies that {(qFt
∗
, qBt

∗
) : t ≥ 0} is optimal for (12). Then, from the proof of (i) and (ii), we know

that the optimal renewable energy use is qRt
∗
= min{yRRt, Dt − qFt

∗
+ ψ(qBt

∗
)}. Thus, to show that qRt

∗
=

min{yRRt, Dt + ψ(qBt
∗
)} is an equivalent expression, we only need to show that if qFt

∗
> 0, then yRRt ≤

Dt − qFt
∗
+ ψ(qBt

∗
). We prove this by contraction. Suppose qFt

∗
> 0 and Dt − qFt

∗
+ ψ(qBt

∗
) < yRRt for

t ∈ [t1, t2]. Then, there exists q̂Ft < qFt
∗
such that q̂Ft > 0 and Dt − q̂Ft + ψ(qBt

∗
) < yRRt for t ∈ [t1, t2].

Then, if we modify the policy such that q̂Ft is used in place of qFt
∗
for t ∈ [t1, t2], the policy is still feasible

for (F.1) and the system dynamics remain the same. However, the modified policy yields a strictly lower cost

than {(yRRt, q
F
t

∗
, qBt

∗
) : t ≥ 0}, which contradicts its optimality for (F.1).

Proof of Lemma 2: We consider the equivalent problem defined in Appendix A. It follows from Lemma

A.1 that this formulation with reflecting boundaries is the same as the original problem to solve. Let us fix a

policy π̃ = (q̃Ft , q̃
B
t ) and initial state (s, r, d, b) and define a function M(s) (for s ≥ s) as follows:

M(s′) =

∫ s′

s

[
cF q̃Ft + ξ

(
D̃t − q̃Ft + ψ(q̃Bt )

)+]
dt+ ξIs′ + ϕ(ts′ , bs′ , rs′ , ds′)− v(s′ − s),

where ts′ = s− ⌊ s′

t0
⌋t0 and D̃t = fd(Dt, dt)− yRfr(Rt, rt). Thus, ts′ ∈ [0, t0].
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Then by Ito’s lemma, we have the following:

dM(s′) =
[
cF q̃Fs′ + ξ

(
D̃s′ − q̃Fs′ + ψ(q̃Bs′ )

)+]
ds+ ξdIs′

+
[∂ϕ(ts′ , xs′)

∂t
+ q̃sB

∂ϕ(ts′ , xs′)

∂b
+
∑
i=r,d

µi(i)
∂ϕ(ts′ , xs′)

∂i
+

1

2

∑
i=r,d

σ2(i)
∂2ϕ(ts′ , xs′)

∂i2
]
ds′ − vds′

+
∂ϕ(ts′ , xs′)

∂b
dIs′ −

∂ϕ(ts′ , xs′)

∂b
dUs′ +

∑
i=r,d

σ(i)
∂ϕ(ts′ , xs′)

∂i
dWi,s′ ,

where xs′ = (rs′ , ds′ , bs′). It follows from (13) that

v ≤ ζ(q̃F , q̃B ; t, x) +
∂ϕ(ts′ , xs′)

∂t
+
∑
i=r,d

µi(i)
∂ϕ(ts′ , xs′)

∂i
+

1

2

∑
i=r,d

σ2(i)
∂2ϕ(ts′ , xs′)

∂i2
.

Thus, we have that

dM(s′) ≥ ξdIs′ +
∂ϕ(ts′ , xs′)

∂b
dIs′ −

∂ϕ(ts′ , xs′)

∂b
dUs′ +

∑
i=r,d

σ(i)
∂ϕ(ts′ , xs′)

∂i
dWi,s′

=
∑
i=r,d

σ(i)
∂ϕ(ts′ , xs′)

∂i
dWi,s′ ,

where the equation in the second line from the fact that Is′ (Us′) increases only when bs′ = 0 (bs′ = B) and

(14). Thus M(s) is a supermartingale. This implies that

E[M(s′)] ≥ E[M(s)] = ϕ(s, b, r, d). (F.2)

Since ϕ is bounded, dividing this inequality by s′ − s and letting s′ go to infinity give that

lim
s′→∞

1

s′ − s
Eπ

[∫ s′

s

[
cF q̃Ft + ξ

(
D̃t − q̃Ft + ψ(q̃Bt )

)+]
dt+ ξIs + ϕ(ts′ , bt, rt, dt)

]
− v

= lim
s′→∞

1

s′ − s
Eπ

[∫ s′

s

[
cF q̃Ft + ξ

(
D̃t − q̃Ft + ψ(q̃Bt )

)+]
dt+ ξIs

]
− v ≥ 0.

In other words, v ≤ C(yR, yF , B, cF ).

Since U is a compact set, there exists q̃Ft
∗
(x) and q̃Bt

∗
(x) that

ζ(q̃Ft
∗
(x), q̃Bt

∗
(x), t, x) = inf

{(qF ,qB)∈U}
ζ(qF , qB , t, x) for all t, x.

Let π̃∗ = (q̃Ft
∗
(x), q̃Bt

∗
(x)) for all t, x. Then all inequalities in the proof become equations. Thus, we have that

v = C(yR, yF , B, cF ).

Next we state and prove two lemmas that facilitate the proof of Lemma 3.

Lemma F.1. There exists an optimal policy π∗ such that the following holds for any initial state:

P (inf{t ≥ 0 : bt = 0} <∞) = 1.

Proof. This can be proved by contradiction. Suppose that

P (inf{t ≥ 0 : bt = 0} = ∞) > 0.

Then, there exists ϵ > 0 such that

P (inf{t ≥ 0 : bt ≤ ϵ} = ∞) = c0 > 0.

Now consider all sample paths that bt ≥ ϵ for all t ≥ 0. Let qFt and qBt denote the optimal control decisions

at time t under the optimal policy π∗. Then we construct a new policy π̂ = (q̂Ft , q̂
B
t ) for this sample path.
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Letting δt = (qFt ∧ (qBt + yBout))
+ ≥ 0, define q̂Ft = qFt − δt and q̂

B
t = qBt − αδt. Then we see that

cF q̂Ft + ξ
(
fd(Dt, dt)− yRfr(Rt, rt)− q̂Ft + ψ(q̂Bt )

)+
≤ cF q̂Ft + ξ

(
fd(Dt, dt)− yRfr(Rt, rt)− qFt + ψ(qBt )

)+
= cF qFt − cF δtξ

(
fd(Dt, dt)− yRfr(Rt, rt)− qFt + ψ(qBt )

)+
.

where the inequality follows from the fact that −q̂Ft + ψ(q̂Bt ) ≥ qFt + ψ(qBt ). We implement the until t′ where

t′ = inf

{
t ≥ 0 :

∫ t

0

δsds = ϵ

}
.

Then after t′, let q̂Ft = qFt and q̂Bt = qBt . Note that the new policy satisfies the control constraints and the

battery level is always greater than ϵ − αϵ > 0. Therefore, the policy π̂ is an admissible policy. In addition,

the total cost incurred under π̂ reduces the cost under policy π∗ by cF
∫ t′

0
δsds = cF ϵ. Thus, in expectation,

the expected cost under π̂ is reduced by

cF ϵP (inf{t ≥ 0 : bt ≤ ϵ} = ∞) = cF ϵc0 > 0.

This contradicts to the fact that π∗ is optimal.

For the following lemma, for s > t0, define ts ≡ τ − ⌊ s
t0
⌋t0. Thus, ts ∈ [0, t0).

Lemma F.2. For any stopping time τ > s that τ <∞ a.s., the following holds: For s ∈ [0, t0),

ϕ(s, x) ≤ Eπ
(s,x)

[∫ τ

s

(
cF qFt + ξ

(
D̃t − yRRt − qFt + ψ(qBt )

)+)
dt− v(τ − s) + ϕ(tτ , xτ )

]
, (F.3)

where D̃t = fd(Dt, dt)− yRfr(Rt, rt). The inequality becomes an equation under the policy π∗.

Proof. We prove the lemma for any fixed time s′ > s. Then the lemma holds for any stopping time τ that

τ <∞ due to strong Markovian property.

It follows from equation (F.2) in the proof Lemma 2 that for x = (r, d, b)

Eπ
(s,x)

[∫ s′

s

(
cF qFt + ξ

(
D̃t − yRRt − qFt + ψ(qBt )

)+)
dt+ ξIs′ − v(s′ − s) + ϕ(ts′ , xs′)

]
≥ ϕ(s, x). (F.4)

Given any admissible policy π, it follows from Lemma A.1 that Is′ = 0. This completes the proof.

Proof of Lemma 3: We first fix (s, r, d) and prove that ϕ(s, b, r, d) is convex in b. Let b(1) > b(2) ∈ [0, B].

We want to show for any a ∈ (0, 1),

ϕ
(
s, x(3)

)
≤ aϕ

(
s, x(1)

)
+ (1− a)ϕ

(
s, x(2)

)
where x(1) = (b(1), r, d), x(2) = (b(2), r, d) and x(3) = (ab(1) + (1− a)b(2), r, d).

We show the convexity by constructing a pathwise control policy π for the process starting with the

state
(
s, x(3)

)
. Note that the randomness of the system only comes from the demand dt and the renewable

generation rt (for t ≥ s). In addition, the evolution of (t, rt, dt) is independent of the battery level. Now we

fix a sample path (t, rt, dt) and consider three systems: The first two systems start at the battery levels b(1)

and b(2) and are running under the optimal control policy π∗. Given the sample path and the control policy,

the two systems are now deterministic. Let (qFt
(i)
qBt

(i)
) (for i = 1, 2) denote the optimal decisions at time t

for systems 1 and 2, respectively. The third system starts at the battery level b(3) = ab(1) + (1 − a)b(2) and
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under the control (qFt
(3)
, qBt

(3)
), where

qFt
(3)

= aqFt
(1)

+ (1− a)qFt
(2)

and qBt
(3)

= aqBt
(1)

+ (1− a)qBt
(2)
.

This control is admissible (though history dependent) because it satisfies the control constraints, and it also

satisfies the state constraint:

b
(3)
t = ab(1) + (1− a)b(2) +

∫ t

s

aqBt
(1)

+ (1− a)qBt
(2)

ds = ab
(1)
t + (1− a)b

(2)
t ∈ [0, B]

Let τ be the first time that the first two systems evolves to the same state, i.e.

τ = inf{t ≥ s : b
(1)
t = b

(2)
t }.

Note that τ is a stopping time. It follows from Lemma F.1 that τ < ∞ almost surely. Otherwise, if the two

systems never reaches to the same battery level, then b
(1)
t > b

(2)
t ≥ 0 for all t ≥ s. This contradicts to Lemma

F.1. Note that the three systems are identical after time τ . In addition, the following holds:∫ τ

s

(
cF qFt

(3)
+ ξ
(
Dt − yRRt − qFt

(3)
+ ψ(qBt

(3)
)
)+)

dt

≤ a

∫ τ

s

(
cF qFt

(1)
+ ξ
(
Dt − yRRt − qFt

(1)
+ ψ(qBt

(1)
)
)+)

dt

+ (1− a)

∫ τ

s

(
cF qFt

(2)
+ ξ
(
Dt − yRRt − qFt

(2)
+ ψ(qBt

(2)
)
)+)

dt.

The inequality follows from the fact that
(
Dt−yRRt− qFt +ψ(qBt )

)+
is convex in (qFt , q

B
t ), since ψ(·) and (·)+

are both convex. Let π denote the policy that follows the prescribed control during [0, τ ] and then follows the

optimal policy afterwards. The inequality holds if we take the expectation under policy π on the left-hand

side and take the expectation under policy π∗ on the right-hand side. That is,

Eπ
(s,x(3))

[∫ τ

s

(
cF qFt

(3)
+ ξ
(
Dt − yRRt − qFt

(3)
+ ψ(qBt

(3)
)
)+)

dt

]
≤ aEπ

(s,x(1))

[∫ τ

s

(
cF qFt

(1)
+ ξ
(
Dt − yRRt − qFt

(1)
+ ψ(qBt

(1)
)
)+)

dt

]
+ (1− a)Eπ

(s,x(2))

[∫ τ

s

(
cF qFt

(2)
+ ξ
(
Dt − yRRt − qFt

(2)
+ ψ(qBt

(2)
)
)+)

dt

]
.

(F.5)

Therefore, it follows from Lemma F.2 that

ϕ
(
s, x(3)

)
≤ Eπ

(s,x(3))

[∫ τ

s

(
cF qFt + ξ

(
Dt − yRRt − qFt + ψ(qBt )

)+)
dt+ ϕ(tτ , xτ )

]
≤ aEπ∗

(s,x(1))

[∫ τ

s

(
cF qFt + ξ

(
Dt − yRRt − qFt + ψ(qBt )

)+)
dt+ ϕ(τ, xτ )

]
+ (1− a)Eπ∗

(s,x(2))

[∫ τ

s

(
cF qFt + ξ

(
Dt − yRRt − qFt + ψ(qBt )

)+)
dt+ ϕ(τ, xτ )

]
= aϕ

(
s, x(1)

)
+ (1− a)ϕ

(
s, x(2)

)
.

The first and last inequalities follows form Lemma F.2. The second equality follows from (F.5).

Since ϕ(t, b, r, d) is convex in b, ∂ϕ(t, b, r, d)/∂b is increasing in b. It follows from the boundary condi-

tion ∂ϕ(t, 0, r, d)/∂b = −ξ and ∂ϕ(t, B, r, d)/∂b = 0 that ∂ϕ(t, b, r, d)/∂b ∈ [−ξ, 0] for all states. Obviously,

ϕ(t, b, r, d) is decreasing in b.

Proof of Proposition 1: The problem (15) can be solved by optimizing qF for every given qB and then
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optimizing qB . Specifically, we first solve

f(qB) = min
qF∈[0,yF ]

cF qF + ξ
(
D̃ + ψ(qB)− qF

)+
(F.6)

and then solve

min
qB∈[−yB

out,αy
B
in ]
f(qB) +

∂ϕ

∂b
qB , (F.7)

To solve (F.6), since ξ > cF by assumption, the optimal qF should reduce the second term
(
D̃ + ψ(qB)−

qF
)+

as much as possible if D̃ + ψ(qB) > 0. Therefore, the optimal solution to (F.6) is qF∗(qB) = (D̃ +

ψ(qB))+ ∧ yF . The corresponding optimal objective value is

f(qB) =


0, if D̃ + ψ(qB) < 0,

cF (D̃ + ψ(qB)), if 0 ≤ D̃ + ψ(qB) < yF ,

ξ(D̃ + ψ(qB)) + (cF − ξ)yF , if D̃ + ψ(qB) ≥ yF .

(F.8)

Next, to derive an explicit solution for (F.7), we rewrite the objective function in (F.8) for three different

ranges of D̃:

(i). D̃ ≥ yF :

f(qB) =



0, if qB < −D̃,

cF (D̃ + qB), if − D̃ ≤ qB < yF − D̃,

ξqB + ξD̃ + (cF − ξ)yF , if yF − D̃ ≤ qB ≤ 0,

ξqB/α+ ξD̃ + (cF − ξ)yF , if qB ≥ 0.

(F.9)

(ii). 0 ≤ D̃ < yF :

f(qB) =



0, if qB < −D̃,

cF (D̃ + qB), if − D̃ ≤ qB < 0,

cF (D̃ + qB/α), if 0 ≤ qB < α(yF − D̃),

ξqB/α+ ξD̃ + (cF − ξ)yF , if qB ≥ α(yF − D̃).

(F.10)

(iii). D̃ < 0:

f(qB) =


0, if qB < −αD̃,

cF (D̃ + qB/α), if − αD̃ ≤ qB < α(yF − D̃),

ξqB/α+ ξD̃ + (cF − ξ)yF , if qB ≥ α(yF − D̃).

(F.11)

Note that, in all three cases, f(qB) is piecewise linear and convex in qB , with minimum slope 0 and

maximum slope ξ/α. On the other hand, the second term in (F.7), ∂ϕ
∂b q

B is linear qB with slope between −ξ
and 0. Therefore, the objective function in (F.7) is piecewise linear and convex in qB , with minimum slope
∂ϕ
∂b ≤ 0 and maximum slope ξ/α+ ∂ϕ

∂b > 0.

Therefore, we can solve (F.7) by first ignoring the constraint qB ∈ [−yBout, αy
B
in ] to obtain the unconstrained

optimal q̂B , given as follows:
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(i). If D̃ ≥ yF , then then the optimal charging/discharging rate is

q̂B =


yF − D̃, if − ξ ≤ ∂ϕ

∂b < −cF ,

−D̃, if − cF ≤ ∂ϕ
∂b ≤ 0.

(ii). If 0 ≤ D̃ < yF , then the optimal charging/discharging rate is

q̂B =


α(yF − D̃), if − ξ ≤ ∂ϕ

∂b < −cF /α,

0, if − cF /α ≤ ∂ϕ
∂b < −cF ,

−D̃, if − cF ≤ ∂ϕ
∂b ≤ 0;

(iii). If D̃ < 0, then the optimal charging/discharging rate is

q̂B =


α(yF − D̃), if − ξ ≤ ∂ϕ

∂b < −cF /α,

−αD̃, if − cF /α ≤ ∂ϕ
∂b ≤ 0;

Since the objective function of (F.7) is convex, the optimal solution constrained by qB ∈ [−yBout, αy
B
in ] can be

written immediately as q̃B =
(
q̂B ∨ (−yBout)

)
∧ (αyBin ).

The corresponding optimal qF is q̃F (q̃B) = (D̃ + ψ(q̃B))+ ∧ yF , which are stated in the proposition

statement. It can be easily verify that q̃F (q̃B) = (q̂F )+ ∧ yF where q̂F is stated in equations (17)-(19).

Proof of Theorem 1: If b = 0, Lemma A.1 implies that qBt
∗
(b, D̃) = q̃B + I ′t. In the proof of Lemma A.1,

we show that if b = 0, the process It satisfies I ′t =
(
q̃Bt
)−

where x− = max(0,−x). Therefore, we have that

qBt
∗
(b, D̃) = q̃B ∨ 0.

Since q̃B ≥ 0 for D̃ ≤ yF , we only consider the case when D̃ > yF . It follows from the boundary condition

in Lemma 2 that ∂ϕ
∂b = −ξ when b = 0. In this case, it follows from Proposition 1 that q̃F = yF , which is

independent of q̃B . Therefore, qFt
∗
(b, D̃) = q̃F = yF .

A similar argument shows that qBt
∗
(b, D̃) = q̃B ∧ 0 and qFt

∗
(b, D̃) = q̃F = 0.

Proof of Lemma 4: For (i), we prove that yR
∗
(weakly) decreases in kR. The same argument can be applied

to prove that yF
∗
decreases in kF and B∗ decreases in kB . We fix capacity costs kB ≥ 0 and kF ≥ 0 and

let kR1 > kR2 ≥ 0. Let (yRi , y
F
i , Bi) denote the optimal solution to (1) under renewable capacity cost kRi , for

i = 1, 2. By the optimality of (yR1 , y
F
1 , B1) under investment costs kR1 , k

F and kB , we have

kR1 y
R
1 + kF yF1 + kBB1 + C(yR1 , y

F
1 , B1) ≤ kR1 y

R
2 + kF yF2 + kBB2 + C(yR2 , y

F
2 , B2).

Subtracting (kR1 − kR2 )y
R
2 from both sides of the inequality yields the following:

kR2 y
R
1 + kF yF1 + kBB1 + C(yR1 , y

F
1 , B1) + (kR1 − kR2 )(y

R
1 − yR2 ) ≤ kR2 y

R
2 + kF yF2 + kBB2 + C(yR2 , y

F
2 , B2).

By the optimality of (yR2 , y
F
2 , B2) under investment costs kR2 , k

F and kB , we have

kR2 y
R
1 + kF yF1 + kBB1 + C(yR1 , y

F
1 , B1) ≥ kR2 y

R
2 + kF yF2 + kBB2 + C(yR2 , y

F
2 , B2).

The above two inequalities imply that (kR1 − kR2 )(y
R
1 − yR2 ) ≤ 0, i.e., yR1 ≤ yR2 .

For (ii), we prove that the partial derivatives exist and ∂yR
∗
/∂kF = ∂yF

∗
/kR. The other two equations

can be proved in the same way. Since it optimal to invest in all three energy sources, the optimal solution to
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(1) has an interior solution. It follows from the first-order condition of equation (1) that(
∂C(yR

∗
, yF

∗
, B∗)

∂yR
,
∂C(yR

∗
, yF

∗
, B∗)

∂yF
,
∂C(yR

∗
, yF

∗
, B∗)

∂B

)T

= −(kR, kF , kB)T .

Thus, (yR
∗
, yF

∗
, B∗) is the inverse function of the function ( ∂C

∂yR ,
∂C
∂yF ,

∂C
∂B ). Since the Hessian of C is singular,

the inverse function theorem guarantees that (yR
∗
, yF

∗
, B∗) are differentiable. Moreover, if we take the

derivative with respect to kR on both sides of the equation, we obtain that∑
i=yR,yF ,B

∂2C(yR
∗
, yF

∗
, B∗)

∂yR∂i

∂i

∂kR
= −1,

∑
k=yR,yF ,B

∂2C(yR
∗
, yF

∗
, B∗)

∂yF∂k

∂i

∂kR
= 0,

∑
k=yR,yF ,B

∂2C(yR
∗
, yF

∗
, B∗)

∂B∂k

∂i

∂kR
= 0.

If we write it in the matrix form, we have that

HC

(
∂yR

∂kR
,
∂yF

∂kR
,
∂B

∂kR

)
= (1, 0, 0)T ,

whereHC is the Hessian matrix of the cost function C(·) evaluated at (yR
∗
, yF

∗
, B∗). SinceHC is non-singular,

it has an inverse matrix. Let H−1
C denote the inverse matrix of HC . Then we have that ∂yF

∂kR = −(H−1
C )21.

Similarly, we can show that ∂yR

∂kF = −(H−1
C )12. Since the Hessian HC is symmetric, its inverse H−1

C is also

symmetric. This implies that ∂yF

∂kR = ∂yR

∂kF . We can prove that ∂yR

∂kB = ∂B
∂kR and ∂yF

∂kB = ∂B
∂kF in the same way.

Proof of Theorem 2: The proof is included in Appendix C.

Proof of Corollary 1: (i) Flexible capacity yF is fixed. By Definition 1, to show substitutes (resp. comple-

ments) between yR
∗
and B∗, we need to show that a decrease in kR leads to a decrease (resp. increase) in B∗.

According to Lemma 4(i), a decrease in kR leads to an increase in yR
∗
, which decreases the net demand D̃t.

As a result, the discharging potentials decrease, while the charging potentials increase. We can also see this

from Figure 2, where we fix yF and decrease the net demand curve. Therefore, if the optimal storage capacity

is B∗ = QDI or B∗ = QDI + QDF based on Theorem 2, B∗ would decrease, meaning that yR
∗
and B∗ are

substitutes. Similarly, if B∗ = QCR or B∗ = QCR +QCF, then B∗ would increase, implying that yR
∗
and B∗

are complements.

(ii) Renewable capacity yR is fixed. According to Lemma 4(i), a decrease in kF leads to an increase in yF
∗
,

which reduces QDI, has no impact on QDI + QDF and QCR, but increases QCR + QCF. We can also see this

from Figure 2, where we raise yF while keeping the net demand unchanged. Therefore, if B∗ = QDI based

on Theorem 2, B∗ would decrease, meaning that yF
∗
and B∗ are substitutes. If B∗ = QCR +QCF, then B∗

would increase, implying that yF
∗
and B∗ are complements.

Proof of Proposition 1’: We can solve (B.4) by optimizing qF for every given qB and then optimizing qB .

Specifically, we first solve

f(qB) = min
qF∈[0,yF ]

cF qF + ξ
(
D̃ + ψ(qB)− qF

)+
(F.12)
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and then solve

min
qB∈[qB

t
,q̄Bt ]

f(qB) + ϕ̃t(bt + qBδ, rt, dt), (F.13)

Note that (F.12) is identical to the problem in (F.6), and the function f(qB) has an explicit expression as

stated in (F.8)-(F.11) in the proof of Proposition 1.

The optimal solution to this problem is qF = min((D̃+ψ(qB))+, yF ). The value of f(qB), which depends

on the net demand D̃, is provided in equations (F.9)-(F.11) for three cases. Note that f(qB) is increasing

and convex in qB in all three cases. Since ϕ̃(b, rt, dt) is also convex in b for fixed rt and dt, equation (F.13)

minimizes a convex function on a compact set. Therefore, we first relax the control bound qBt ∈ [qB
t
, q̄Bt ] and

solve

min
q̂B

f(qB)− v + ϕ̃t(bt + q̂Bδ, rt, dt). (F.14)

The optimal solution to equation (F.13) is qBt
∗
= qB

t
∨ (q̂B ∧ q̄Bt ) where q̂B is the optimal solution to equation

(F.14). The rest of the proof is dedicated to find the optimal solution for equation (F.14).

The value of the function f(·) depends on the value of the net demand D̃, as shown in equations (F.9)-

(F.11). In all three cases, it is a piecewise linear function. We derive the optimal solution (B.5) for the case

D̃ > yF in details next. We omit the discussion for other two case because the derivation follows the same

steps.

Since ∂ϕ̃t(b, rt, dt)/∂b ∈ [−ξ/δ, 0] for any b ∈ [0, B] and f ′(qB) ≥ ξ for qB ≥ yF − D̃, we have that

f ′(qB) +
∂ϕ̃t(bt + qBδ, rt, rt)

∂b
δ ≥ 0 for qB ≥ yF − D̃.

In addition, we have that f ′(qB) = 0 for qB < −D̃. This implies that

f ′(qB) +
∂ϕ̃t(bt + qBδ, rt, rt)

∂b
δ ≤ 0 for qB < D̃.

Therefore, it suffices to consider the case when qB ∈ [−D̃, yF −D̃]. Note from equation (F.9) that f ′(qB) = cF

for qB ∈ [−D̃, yF − D̃]. Now consider the following three cases:

1. (b̄t − bt)/δ > yF − D̃. Then we have that bt + (yF − D̃)δ < b̄t. Since ∂ϕ̃t(·)/∂b is increasing in b, we

have that for qB ∈ [−D̃, yF − D̃],

∂ϕ̃t(bt + qBδ, rt, dt)

∂b
≤ ∂ϕ̃t(bt + (yF − D̃)δ, rt, dt)

∂b
≤ ∂ϕ̃t(b̄t, rt, dt)

∂b
= −cF .

This implies that f(qB) + ϕ̃t(bt + qBδ, rt, dt) is decreasing in qB for qB ∈ [−D̃, yF − D̃]. The optimal

solution q̂B = yF − D̃.

2. If (b̄t − bt)/δ ∈ [yF − D̃,−D̃]. In this case, since ϕ̃t(bt + qBδ, rt, dt) is convex in qB and

f ′(b̄t − bt)/δ) +
∂ϕ̃t(b̄t, rt, dt)

∂b
= 0,

the optimal solution is the interior solution q̂B = (b̄t − bt)/δ.

3. If (b̄t − bt)/δ < −D̃. In this case, since ϕ̃t(bt + qBδ, rt, dt) is convex in qB , we have that for qB ∈
[−D̃, yF − D̃],

∂ϕ̃t(bt + qBδ, rt, dt)

∂b
≥ ∂ϕ̃t(bt + (−D̃)δ, rt, dt)

∂b
≥ ∂ϕ̃t(b̄t, rt, dt)

∂b
= −cF .

This implies that f(qB) + ϕ̃t(bt + qBδ, rt, dt) is increasing in qB for qB ∈ [−D̃, yF − D̃]. The optimal

24

Electronic copy available at: https://ssrn.com/abstract=3983678



solution is q̂B = −D̃.

In sum, the optimal solution is q̂B = (yF − D̃) ∧ [−(D̃ ∧ ((b− b̄t)/δ)]. Note that if ∂ϕt(bt, rt, dt) < −cF , then
bt < b̄t. In this case, (b̄t)− bt)/δ > 0 > yF − D̃. The optimal solution is just q̂B = yF − D̃. This completes the

derivation of the optimal solution in equation (B.5). The optimal policy considering the charging constraint

is qB
∗
t = (qB

t
∨ q̂B) ∧ q̄Bt . In addition, qF

∗
= (D̃ + ψ(qB

∗

t ))+ ∧ yF .
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