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Problem definition: A service is offered at certain locations (“facilities”) in a geographical region. Cus-

tomers can appear anywhere in the region, and each customer chooses a facility based on travel distance

as well as expected waiting time. Customer decisions affect waiting times by increasing the load on a facil-

ity, and thus impact other customers’ decisions. The service provider can also influence service quality by

adjusting service rates at each facility. Methodology/results: Using a combination of queueing models and

computational geometry, we characterize demand equilibria in such spatial service systems. An equilibrium

can be visualized as a partition of the region into service zones that form as a result of customer decisions.

Service rates can be set in a way that achieves the best possible social welfare purely through decentral-

ized customer behavior. Managerial implications: We provide techniques for computing and visualizing

demand equilibria, as well as calculating optimal service rates. Our analytical and numerical results indicate

that, in many situations, resource allocation is a far more significant source of inefficiency than decentralized

behavior.
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1. Introduction

Consider a service system in which customers are served by facilities at different locations

within a geographical region. For example, the facilities could represent mobile medical

stations or locations of a department of motor vehicles. Customers, located anywhere in

the geographical region, can choose one of the facilities where they wish to be served. They

will not necessarily choose the closest facility: the decision is based, not only on the travel
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distance, but also on the expected waiting time at the facility, which depends on how

many other customers have chosen to receive service there. Real-time information about

the waiting times is not available to the customer, but they can infer the average.

Thus, customer decisions influence one another through the waiting time. A facility

located in the middle of a densely populated area may appear to be convenient, but the

low travel time may attract a large number of customers, driving up the waiting time and

making the facility less appealing. Some customers may then prefer to travel farther in

order to take advantage of shorter lines. These tradeoffs can be studied using a notion of

demand equilibrium, which consists of customer choices (for every possible location in the

region) that are individually optimal for each customer and, in aggregate, lead to a stable

set of loads on the facilities.

We study the equilibrium using a queueing model in which customers arrive according

to a spatio-temporal Poisson process (not only at random times, but at random locations),

and each facility is represented by an M/M/1 queue. As long as there is enough capacity

in the system to handle aggregate demand, a unique equilibrium exists and gives rise to

a geometric partition of the region, with each facility serving all customers whose arrival

locations are in a particular “zone” whose shape and size are jointly determined by all

customer choices. The partition belongs to a class of spatial structures called “additively

weighted Voronoi diagrams” (Devulapalli et al. 2015), but satisfies an additional equilib-

rium condition not previously studied in that literature. Thus, our paper brings together

computational geometry and queueing in a novel way. We present comparative statics of

the equilibrium partition, and show how it can be computed and visualized.

We then study the social welfare of the equilibrium, measured in terms of the expected

total cost (travel plus waiting) per customer. It is well-known (Ghosh and Hassin 2021)

that decentralized behavior in queueing systems generally does not lead to socially optimal

outcomes. This “price of anarchy” can also arise in our problem: if the service provider

had the ability to design the service zones and impose them on customers in a centralized

manner (i.e., assign each customer to a facility), instead of allowing the zones to form

as a result of customer decisions, then, in general, the social welfare could be improved.

However, we find that, for certain values of the service rates, the decentralized equilibrium

partition coincides with the centralized one – and, what is more striking, these service

rates are optimal for the social welfare.
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More specifically, suppose that the service provider can control mean service times at the

facilities through allocation of resources such as money or staff. Our single-server model

enables a simple and natural formulation of this decision: the service rate itself can be

viewed as the “resource,” with the total service capacity across all facilities satisfying a

budget constraint. This interpretation of service rates as a resource to be allocated has

previously been used to study problems in healthcare systems (Chao et al. 2003), service

systems (Shanthikumar and Xu 1997), and business process management (Dieker et al.

2017). In our context, by changing the service rates, one also changes the geometry of the

centralized partition, as well as the social welfare that it achieves. One can then set service

rates to optimize social welfare. But, under those same optimal service rates, the centralized

partition is also identical to the decentralized partition formed through individual choice.

In other words, it is possible to recover the absolute best possible social cost, purely through

decentralized behavior, simply by setting the service rates correctly.

We further show that this result continues to hold when customer choice is subject to

random shocks, which allows for differences in perception between customers of the waiting

times or of the inconvenience of waiting. In that setting, the equilibrium can no longer be

visualized as a geographical partition, because two customers arriving at the same location

can now choose different facilities, but it still exists as a set of choice probabilities that are

individually optimal and induce stable loads on each facility. The optimal service rates are

different from those computed under deterministic choice, but they still recover the best

possible equilibrium under decentralized customer behavior.

The managerial value of our work is threefold. First, we provide a clean geometric inter-

pretation of the decentralized equilibrium, where each facility is associated with a service

zone. Second, we provide techniques for computing these zones, allowing for easy visual-

ization and comparison of various “what-if” scenarios. (These same techniques can also

be used to compute optimal service rates.) Third, our analysis shows that social welfare

optimization is entirely a matter of resource allocation. As long as the service rates are set

optimally, there is no loss in efficiency resulting from decentralized behavior, and socially

optimal outcomes can be achieved without the need for any other manipulation of the sys-

tem. Our numerical results also indicate that, even under suboptimal allocations, resource

allocation is a far more significant source of inefficiency than decentralized behavior when

the aggregate demand is high.



Carlsson, Peng, and Ryzhov: Demand Equilibria in Spatial Service Systems
4 Article submitted to Manufacturing & Service Operations Management; manuscript no. (Please, provide the manuscript number!)

2. Literature Review

In the following, we discuss the connections between our work and the literature on queue-

ing and computational geometry, respectively.

Queueing. There are numerous papers on equilibrium analysis of strategic customer

behavior in queueing systems; see Hassin and Haviv (2003) and Hassin (2016) for a com-

prehensive review. More specifically, there is a significant literature on strategic joining

decisions, where customers decide between queues in a way that balances expected waiting

time against some other consideration, such as reward from the service. (Empirical evi-

dence indicates that customers do consider congestion levels when making such decisions;

see Dong et al. 2019.) For example, in Armony and Maglaras (2004) the choice is between

two service modes representing real-time and call-back options at a call center; in Pender

et al. (2020) it is between two identical queues whose states are observable; in Zhou and

Ryzhov (2021) it is between a slow, but free queue and a fast, but expensive one.

Most of these studies do not incorporate spatial structure. Travel cost (distance or time)

is included in some models, but in a fundamentally one-dimensional manner: Rajan et al.

(2019), Hassin and Roet-Green (2020) and Wang et al. (2023) all model such costs as i.i.d.

random variables, which suffices for their purposes because they all assume that service is

delivered by a single M/M/1 queue. Thus, these studies capture the effect of travel cost on

congestion, but not the tradeoffs that arise when comparing multiple queues at different

locations. In such situations, it becomes necessary to model the spatial position of the

arrival rather than only the distance to a queue.

Very few studies have done so. Heinhold (1978), Lee and Cohen (1985) and Grossman

and Brandeau (2002) consider customer choice between facilities, but restrict the cus-

tomers to a finite, pre-specified set of locations, in effect reducing the problem to matching

between supply and demand nodes, as in the classic transportation network model. (Along

those lines, there are also some network optimization models with queueing elements, for

example the work by Kullman et al. 2021 on electric vehicle routing, but they have a more

algorithmic focus and do not study demand equilibria.) Alptekinoglu and Corbett (2010)

and Xu et al. (2016) use a Hotelling-type location model where customers can appear

anywhere, but only on a one-dimensional interval. A recent work by Ding et al. (2022) con-

siders a general abstract setting with uncountably many customer types (thus, potentially,

each possible arrival location could be a “type”). This work focuses on the theoretical
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characterization of fluid and diffusion limits, whereas our paper studies a more explicitly

spatial setting and focuses on geometric characterization and interpretation of customer

choice.

There is an extensive literature on inefficiencies caused by strategic customer behavior,

and various mechanisms for improving the social welfare, such as fee structures (Gavirneni

and Kulkarni 2016), imposition of delays (Baron et al. 2022), specialized priority rules

(Haviv and Oz 2018), and partial information structures (Economou 2021). One could per-

haps think of our resource allocation problem (dividing service capacity between queues) as

another such mechanism; in our setting, it turns out to be entirely sufficient for eliminating

the inefficiency.

Computational geometry. Geographical partitioning problems have been extensively

studied in computational geometry, with facility logistics being a well-known application

area (Carlsson and Devulapalli 2013). The additively weighted Voronoi diagram (Auren-

hammer 1991) is a class of partitions where each customer minimizes the sum of travel

distance and a facility-specific “weight.” This literature assumes that the weights (or,

equivalently, the areas of the service zones) are fixed constants and primarily focuses on

computation of the diagram; see, e.g., Aurenhammer and Klein (2000), Pavone et al. (2011),

and Hartmann and Schuhmacher (2020). The novelty of our paper, relative to this liter-

ature, is that the weights in our model are endogenized: they represent expected waiting

times at each queue, and thus are impacted by customer decisions.

In the operations literature, geographical partitioning has been viewed primarily as a

central planning problem. For example, in Haugland et al. (2007), a logistics firm designs

delivery districts for vehicles, while Ricca et al. (2008) proposes to use weighted Voronoi

diagrams for political districting. In these and other applications, the central planner can

impose any desired partition on the region. This is not the case in our paper: the partition

is determined in a decentralized manner through customer choice, and the service provider

can at most influence it indirectly through the service rates. Thus, while Voronoi diagrams

have been used to achieve various fairness and social welfare objectives (Aronov et al. 2009,

Yushimito et al. 2012), we appear to be the first to study decentralized partitioning and

whether it can achieve social optimality.

For computing and visualizing demand equilibria, we develop a mathematical program-

ming formulation that generalizes Carlsson et al. (2016) to a broader class of partitioning
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problems. The formulation can be viewed as a two-stage model where the second (inner)

stage is based on Carlsson et al. (2016), and the first (outer) stage is new to our paper.

Our analysis presents some stand-alone interest for computational geometry as it relates

the weights of the Voronoi diagram to the gradient of the cost function (e.g., the waiting

time). It also accommodates a high level of generality: in particular, to find the socially

optimal equilibrium, it is necessary to use a nonconvex cost.

3. Demand Equilibria and Their Properties

This section proposes a model to characterize the equilibrium of the spatial queueing prob-

lem and presents properties of the equilibrium. Section 3.1 describes our spatial queueing

problem and defines the equilibrium. Section 3.2 proves existence and uniqueness of the

equilibrium, and Section 3.3 analyzes its comparative statics.

3.1. Definitions

We consider a metric space (Rn, d) and a region S ⊆ Rn, which is closed and convex.

Customers arrive according to an exogenous spatio-temporal Poisson process in S. The

arrival rate is spatially heterogeneous with a positive intensity function λ(x) for x∈ S. In

the simplest case, let n= 2, d be the Euclidean distance, and S be a geographical region;

then, λ(x) is the arrival rate of demand at a particular physical location x on the map,

with the dependence on x reflecting the population density and demographics. However, in

Section 5, we consider a more general setting where S includes geography as well as other

attributes. We denote by m(x) = λ(x)/λ the normalized arrival intensity in the region,

where λ =
∫∫
S λ (x)dx is the aggregate arrival rate. For any measurable set A ⊆ S on

this region, we define A =
∫∫
Am (x)dx to be the fraction of total demand arising in the

subregion. We refer to A as the “area” of subregion A because, when arrivals are uniformly

distributed on the region, A reduces to the Lebesgue measure of A. Thus, the number

of customers arriving in the time interval [0, t], inside a measurable set A⊆ S, follows a

Poisson distribution with mean λAt.

The exogenous Poisson arrival assumption implicitly assumes that the demand arises

at location x independently of other locations; roughly speaking, the arrival process in

each infinitesimal subregion is an independent renewal process. Under the mild assumption

that the arrival rates of these processes scale similarly, the Palm-Khintchine Theorem (ch.

5.9 of Karlin and Taylor 1975, ch. 5.8 of Heyman and Sobel 2003) guarantees that their
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superposition, which is the aggregated arrival process of any A⊆S, is a Poisson process.

The assumption of independent demand is a good fit for, e.g., public services or healthcare

services, where it is reasonable to suppose that the need of a particular household for a

new driver’s license or a visit to the emergency room is independent of its neighbors. In

these applications, every arrival needs the service and has to choose a facility to complete

the service.

When an arrival occurs, the customer chooses from one of the K facilities with prede-

termined locations x1, ..., xK ∈ S.The travel distance between a customer and facility k is

dk(x) = d(x,xk) for x∈ S. A common choice for the distance metric is d (x,xk) = ‖x−xk‖2,

but any other continuous metric can also be used. The kth facility operates an M/M/1

queue with service rate µk. We assume that
∑

k µk > λ, that is, the aggregate capacity of

the system is sufficient to serve all of the demand. Thus, the arrival rate to each queue will

be determined endogenously by the set of customers that prefer that facility to others.

A geographical partition of the region is a collection {Ak}Kk=1 of subsets of S such that⋃
kAk = S and Aj ∩Ak has measure zero for any j 6= k. Let Ak =

∫∫
Ak
m (x)dx denote the

area of the kth subset. A demand equilibrium is represented by a specific partition that

satisfies the condition

dk(x) + fk (Ak)≤min
j 6=k

dj(x) + fj (Aj) ∀x∈Ak, k= 1, ...,K, (1)

where

fk (A) =

 c
µk−λA

A< µk
λ
,

∞ otherwise

is the expected waiting time at facility k, given that the facility serves a proportion A of

arrivals (i.e., the arrival rate to the kth queue is λA), scaled by a constant c > 0. Equation

(1) ensures that a customer arriving at a point x∈Ak prefers facility k to the others. Thus,

each customer minimizes the cost of traveling to a facility (represented by the distance)

plus the expected waiting time at that facility. The constant c is used to weigh these two

types of costs; one may think of c as the slope of a linear utility function used to convert

between distance and time. The sets Ak are determined by customer choice according to

(1), so the space S is divided between facilities in a decentralized manner.
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There is an important connection between this model and the framework of additively

weighted Voronoi diagrams (Devulapalli et al. 2015). Such a diagram partitions a plane

into regions around the locations x1, ..., xK . The kth region consists of all points x satisfying

dk(x) +wk ≤min
j 6=k

dj(x) +wj, (2)

where w1, ...,wK are fixed weights. We abuse notation slightly by lettingAk (w) be the set of

all x such that (2) holds for the given vector w= (w1, ...,wK), with Ak (w) =
∫∫
Ak(w)

m (x)dx

being the corresponding area. In computational geometry, the weights wk are pre-specified

constants, which then determine the regions (alternately, one can fix the areas Ak first,

which then determines the weights; see Hartmann and Schuhmacher 2020). In our setting,

however, the region served by facility k is the set Ak (w∗), where w∗ is a vector of weights

that satisfy the equilibrium condition

w∗k = fk (Ak (w∗)) . (3)

In other words, (1) describes a particular additively weighted Voronoi diagram whose

weights are chosen to satisfy (3).

We now state several properties of the area Ak that will be used (in Sections 3.2-3.3) to

prove existence, uniqueness, and structural properties of the equilibrium. These properties

will apply to any area function that satisfies the conditions in Lemma 1.

Lemma 1. For a weight vector w, the areas of the partition satisfy the following:

1. Ak(w) is continuous in w;

2. For weights w and w̃ such that wk− w̃k ≥wj − w̃j for all j, Ak(w)≤Ak(w̃);

3. ∂Ak

∂wk
≤ 0 and ∂Ak

∂wj
≥ 0 for j 6= k;

4.
∑

j
∂Ak

∂wj
= 0.

Proof. The continuity of Ak in w follows from the properties of additively weighted

Voronoi diagrams (see, e.g., Lemma 3.3 in Hartmann 2016). The second property follows

from (2), which implies Ak (w)⊆Ak (w̃), whence Ak (w)≤Ak (w̃). The last two properties

also follow from (2). Increasing the weight of any one region reduces the value of that

region, relative to all others, to a customer originating at any given x. On the other hand,

adding the same constant to all the weights will not affect the areas. �
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3.2. Existence and Uniqueness of the Equilibrium

The main result of this section is that (3) always has a unique solution. Existence of the

equilibrium weights w∗ is shown using Brouwer’s fixed point theorem, but some care is

required because the scaled waiting time functions fk are not bounded and the area func-

tions Ak (w) in (3) do not have a closed form. Because the weights determine the partition

in an additively weighted Voronoi diagram, uniqueness of w∗ implies the uniqueness of the

equilibrium partition (1).

We begin by noting several useful properties of the functions fk. First, each fk maps R+

into the extended positive numbers R̄+ =R+ ∪{∞}. Moreover, each fk is increasing with

fk (0)> 0 and fk (t) =∞ for t≥ tk and some known tk > 0 that satisfy
∑

k tk > 1. Each fk

is finite and continuous on [0, tk) with limt↗tk fk (t) =∞.

Lemma 2. Let w̄ be the optimal value of the problem

max
a

min
k
fk (ak) (4)

subject to a = (a1, · · · , aK)≥ 0 and
∑

k ak = 1. Then, w̄ <∞.

Proof. Suppose that w̄=∞. The feasible region of problem (4) is closed, so there must

be some feasible a for which fk (ak) =∞ for all k. Therefore, by the structure of fk, we

have ak ≥ tk for all k, whence 1 =
∑

k ak ≥
∑

k tk. This leads to a contradiction. �

Define the compact set W =
{
w ∈RK : 0≤wk ≤ w̄∗, k= 1, ...,K

}
, where w̄∗ =

max
{

1 + w̄+ supx∈S,j,k |dj(x)−dk(x)|,maxk fk(0)
}

. Also define the function φ :W→W as

φk (w) = min{fk (Ak (w)) , w̄∗} .

To help us solve the original equilibrium problem, we first show that φ has a fixed point.

Lemma 3. The fixed-point problem w= φ (w) has a solution in W.

Proof. The set W is compact and convex, and Ak is continuous in w by Lemma 1. The

result then follows by Brouwer’s fixed point theorem. �

Theorem 1. Let w∗ = φ (w∗) be a fixed point of φ. Then, w∗ also solves the equilibrium

problem (3).

Proof. It is sufficient to show that fk (Ak (w∗)) ≤ w̄∗ for all k. Suppose the con-

trary, i.e., that there exists some k with fk (Ak (w∗)) > w̄∗. Thus, w∗k = φk(w
∗) =

min{fk (Ak (w∗)) , w̄∗}= w̄∗. At the same time, by the definition of (4), there exists j 6= k
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such that fj (Aj (w∗))≤ w̄ < w̄∗, which implies that w∗j = fj (Aj (w∗)). Then, for any x∈ S,

we have

dj(x) +w∗j ≤ dj(x) + w̄≤ dk(x) + w̄+ |dj(x)− dk(x)|<dk(x) + w̄∗.

Consequently, j is always preferred to k, whence Ak (w∗) = 0. Then, we have fk (Ak (w∗)) =

fk (0), which leads to a contradiction since fk (0)≤ w̄∗. �

Theorem 2. The solution w∗ of (3) is unique.

Proof. We proceed by contradiction: suppose that w(1) 6=w(2) are two solutions of (3).

Without loss of generality, suppose that

w
(1)
1 −w

(2)
1 ≥w

(1)
2 −w

(2)
2 ≥ ...≥w

(1)
K −w

(2)
K , (5)

with at least one of the inequalities being strict.

We first argue that w
(1)
1 −w

(2)
1 ≥ 0. To show this, suppose that w

(1)
1 −w

(2)
1 < 0. Then, by

(5), we have w
(1)
k −w

(2)
k < 0 for all k. Since fk (A) is a strictly increasing function of A, we

have Ak

(
w(1)

)
<Ak

(
w(2)

)
for all k. Then,

1 =
∑
k

Ak

(
w(1)

)
<
∑
k

Ak

(
w(2)

)
, (6)

which is impossible because
∑

kAk (w) = 1 for any w. Thus, we have shown w
(1)
1 −w

(2)
1 ≥ 0.

Next, we argue that w
(1)
1 − w

(2)
1 > 0. Suppose that w

(1)
1 − w

(2)
1 = 0 (we have already

handled the case where the difference is strictly negative). Then, there exists k <K such

that w
(1)
j −w

(2)
j = 0 for j ≤ k and w

(1)
j −w

(2)
j < 0 for j > k. We then obtain (6) again, which

is impossible.

Finally, we argue that w
(1)
1 − w

(2)
1 ≤ 0, which will contradict the preceding statement

and complete the proof. It follows from (5) that w
(1)
1 −w

(1)
k ≥w

(2)
1 −w

(2)
k for all k > 1. By

Lemma 1, we have A1

(
w(1)

)
≤A1

(
w(2)

)
. By (3), we have w

(1)
1 ≤w

(2)
1 , as desired. �

3.3. Comparative Statics of the Equilibrium Solution

In this section, we fix the normalized arrival intensity function m(x) and investigate how

the expected waiting times change as the aggregate arrival rate λ and the service rates µk

change. Through (3), the weights of the Voronoi diagram also give the expected waiting

times (scaled by c) at each facility. We show that 1) increasing the aggregate arrival rate λ

will increase the expected waiting time at every facility, and 2) increasing the service rate

µk at any facility will reduce all of the waiting times, with the kth facility seeing the most

improvement.
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Some technical preliminaries are needed for these results. In linear algebra, a matrix

C is said to be an “M-matrix” (Young 1971) if its off-diagonal entries are negative (i.e.,

Cij ≤ 0 for i 6= j) and the real parts of its eigenvalues are all positive. It is known that all

M-matrices are monotone, meaning that Cv≥ 0 implies v≥ 0 for all v. This notion is used

in the following technical lemma.

Lemma 4. Fix an arbitrary w and define the matrix D by

Djk =
λc

(µj −λAj (w))2 ·
∂Aj

∂wk
.

Then, the matrix I −D is an M-matrix.

Proof. By Lemma 1, we have
∂Aj

∂wj
≤ 0 and

∂Aj

∂wk
≥ 0 for j 6= k. Consequently, (I −D)jk ≤ 0

for j 6= k, one of the properties required of an M-matrix.

Note from Lemma 1 that
∑

k
∂Aj

∂wk
= 0. Therefore, for any j, we also have∑

k

Djk =
λc

(µj −λAj (w))2

∑
k

∂Aj

∂wk
= 0.

Consequently, ∣∣∣(I −D)jj

∣∣∣= (I −D)jj > (−D)jj =
∑
k 6=j

Djk =
∑
k 6=j

∣∣∣(I −D)jk

∣∣∣ ,
whence it follows that the matrix I −D is strictly diagonally dominant. Then, by Thm.

6.1.10 of Horn and Johnson (2013), every eigenvalue of I −D has positive real part, com-

pleting the proof. �

We now show that both of the desired structural properties follow by considering equa-

tions of the form (I −D)w′ = v, where w′ is the vector of partial derivatives of w∗ with

respect to the parameter of interest, and applying the monotone property of M-matrices.

Theorem 3. Let w∗ be the unique solution of (3). Then, we have
∂w∗

j

∂λ
≥ 0 for all j, and

∂w∗
j

∂µk
≤ 0 for all j, k. Furthermore,

∂w∗
k

∂µk
<

∂w∗
j

∂µk
.

Proof. To obtain the first result, we differentiate both sides of the equation wj =

fj (Aj (w)) with respect to λ and obtain

∂wj
∂λ

=− c

(µj −λAj (w))2

(
−Aj (w)−λ

∑
k

∂Aj

∂wk
· ∂wk
∂λ

)
,

which can be rewritten as the linear system (I −D)w′ = v, where w′j =
∂wj

∂λ
, and

vj =
cAj (w)

(µj −λAj (w))2 .
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It is clear that v≥ 0, so we conclude w′ ≥ 0 because I −D is an M-matrix by Lemma 4.

To obtain the second result, we differentiate both sides of wj = fj (Aj (w)) with respect

to µk. Similarly to the first case, we obtain the linear system (I −D)w′ = v where w′j =
∂wj

∂µk

and

vj =

− c
(µj−λAj(w))2

j = k,

0 j 6= k.
(7)

Because v≤ 0 and I −D is an M-matrix, we obtain w′ ≤ 0.

Finally, we recall that
∑

k (I −D)jk > 0 for all j. It then follows by Lemma 3.14 in

Chapter 9 of Berman and Plemmons (1994) that (I −D)−1
kk > (I −D)−1

jk for all j 6= k.

Returning to the system (I −D)w′ = v where v is as in (7), we find

w′k =− c

(µk−λAk (w))2 (I −D)−1
kk <−

c

(µk−λAk (w))2 (I −D)−1
jk =w′j,

as desired. �

Theorem 3 allows us to characterize the comparative statics of the equilibrium areas

Aj (w∗) with respect to the service rates. As expected, increasing µj will make the jth

facility more attractive to customers, increasing Aj. Increasing µk for k 6= j will reduce Aj,

a property that is less obvious than may seem at first: if the kth facility becomes more

attractive, some customers may switch to the kth facility from the jth, but this will also

have the effect of reducing the load on the jth facility, making it more attractive for other

customers. The next result shows that the net effect on Aj will be negative.

Proposition 1. Let w∗ be the unique solution of (3). Then,
∂Aj(w∗)

∂µk
≤ 0 for k 6= j, and

∂Aj(w∗)

∂µj
≥ 0.

Proof. The first statement follows from the relation
∂wj

∂µk
= λc

(µj−λAj(w))2
∂Aj

∂µk
together with

Theorem 3. To obtain the second statement, we write

∂Aj

∂µj
=
∂Aj

∂wj
· ∂wj
∂µj

+
∑
k 6=j

∂Aj

∂wk
· ∂wk
∂µj

≥ ∂Aj

∂wj
· ∂wj
∂µj

+
∑
k 6=j

∂Aj

∂wk
· ∂wj
∂µj

(8)

=
∂wj
∂µj

∑
k

∂Aj

∂wk
= 0,

where (8) is due to Theorem 3 and the fact that
∂Aj

∂wk
≥ 0 for k 6= j by Lemma 1. �
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4. Social Welfare and the Equilibrium

In this section, we introduce the notion of a “centralized” partition that optimizes the

social welfare, and compare it to the decentralized partition studied in Section 3. These

results complement, but are not directly connected to the structural properties derived

in Section 3. The primary analytical tool for this comparison is an abstract partitioning

problem formulated in Section 4.1. The decentralized equilibrium in Section 3 and the

two centralized partitions introduced in this section can be viewed as special cases of this

general problem. We show that any locally optimal solution of the general problem is

described by a particular kind of Voronoi diagram, allowing us to compare different types

of partitions visually.

In Section 4.2, we consider a hypothetical situation where the service provider can design

the partition and impose it on customers. In other words, the partition is no longer required

to satisfy (1). One can then formulate an instance of the abstract partitioning problem to

optimize the social welfare under a fixed set of service rates. We characterize the geometry

of such a socially optimal partition and compares it with the decentralized partition in

equilibrium studied in Section 3. Then, in Section 4.3, we suppose that the service provider

can also set the service rates µ subject to a budget constraint. We then show that, if

the rates are set in a certain way, the decentralized equilibrium partition is identical to

the centralized one that achieves the local optimum. In particular, this is true for the

globally optimal service rates, meaning that the absolute best possible social welfare can

be achieved purely through decentralized customer behavior.

Lastly, Section 4.4 discusses how the abstract partitioning problem can be solved com-

putationally. In particular, when the service rates are variable, the objective function of

this problem becomes nonconvex, and branch-and-bound methods have to be used to find

a global optimum.

4.1. A General Partitioning Problem

Let ν be a probability density on S that is absolutely continuous with respect to Lebesgue

measure. Suppose that we are given continuous and differentiable functions gk : Rn →
R, k = 1, ...,K, and G : RK → R. We assume that the functions gk satisfy the following

regularity condition: if Y is a random vector with density ν, then the random variable

gj (Y ) − gk (Y ), for any j 6= k, has a density. This condition holds in all of the specific

instances of this problem that we will consider.
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We now formulate the problem

min
A1,...,AK

G (A1, ...,AK) +
∑
k

∫∫
Ak

gk (x) dν, (9)

subject to the constraints

Ak =

∫∫
Ak

dν, k= 1, ...,K (10)

ν (Aj ∩Ak) = 0, j 6= k, (11)⋃
k

Ak = S. (12)

The following analytical result shows that any locally optimal solution of (9)-(12) is

described by an additively weighted Voronoi diagram whose weights are found by evalu-

ating the gradient of G at the corresponding areas. We specifically mention local optima

because G is not assumed to be convex in (A1, ...,AK), and in fact one of our major results

in this section will use a nonconvex instance. However, if G is convex, every local optimum

will also be a global optimum, with no additional conditions on gk required. The proof is

highly technical and deferred to the Appendix.

Theorem 4. For all k, any local optimum Ā of (9)-(12) satisfies

gk (x) +
∂G
(
Ā
)

∂Ak

≤min
j 6=k

gj (x) +
∂G
(
Ā
)

∂Aj

, x∈ Āk.

Problem (9)-(12) can be viewed as a generalization of the setting of Carlsson et al. (2016),

with several important distinctions. First, Carlsson et al. (2016) does not include G in the

objective function, and only considers the linear (integral) term. Second, in Carlsson et al.

(2016), the areas Ak are fixed ahead of time, whereas in our formulation they are decision

variables together with the sets Ak. Our computational approach in Section 4.4 interprets

(9)-(12) as an optimization problem with two layers: an inner layer that optimizes the

linear part of the cost subject to fixed areas, and an outer layer that optimizes G(A) and

the optimal value of the inner problem over Ak. The inner layer is handled in a manner

similar to Carlsson et al. (2016), but the outer layer is completely new to our paper and

requires additional careful analysis (particularly when G is nonconvex).

4.2. Socially Optimal Partitions

First, we consider the case where the service provider can design the partition and impose

it on customers with fixed service rates µk. Given a particular set of facility locations and
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service rates, and letting Ak be a partition with corresponding areas Ak, we can define the

social welfare as

W =
∑
k

Ak
c

µk−λAk

+

∫∫
Ak

dk(x)m(x)dx, (13)

the expected total cost (travel plus waiting) per customer, taken over the spatial distri-

bution of arrivals. Note that the area Ak is also the probability that a new arrival will be

served by facility k, hence the expected waiting times in the first term of (13) are weighted

by the areas. Thus, the partition that maximizes the social welfare can be solved using the

partition problem (9)-(12) by letting ν =m, gk (x) = dk(x) and

G (A) =
∑
k

Ak
c

µk−λAk

,

the scaled expected waiting time of a single customer. With these specifications, (9)-(12)

can be viewed as a centralized social welfare optimization problem, in which a customer

arriving at location x ∈ Ak must receive service at the kth facility and cannot choose

another one. The objective is precisely the social welfare in (13). Since G is convex in A,

any partition satisfying the condition of Theorem 4 is globally optimal.

By Theorem 4, it is described by an additively weighted Voronoi diagram whose weight

vector w̄ satisfies the centralized optimality condition

w̄k =
∂G
(
Ā
)

∂Ak

=
c

µk−λĀk

+
λcĀk(

µk−λĀk

)2 =
µkc(

µk−λĀk

)2 . (14)

Clearly, this does not yield the same partition as (3), meaning that, for arbitrary µ, the

decentralized demand equilibrium is not socially optimal. The weight w̄k in the centralized

case consists of two parts. The first term is identical to the decentralized case, where

customers are self-interested and care about their own waiting times. The second term

captures the total externality, i.e., the marginal disutility, that one choosing facility k

imposes on others who also choose facility k. The externality term increases as the area

associated with the facility increases. It is well-known (Naor 1969 and references in Hassin

2016) that self-interested customers may over-congest a system; equation (14) shows that

the centralized partition reduces the area assigned to a facility if it has a high externality

term, thus partially mitigating this effect.

Figures 1- 2 illustrate the difference between the decentralized equilibrium whose weights

are given by (3), and the centralized socially optimal partition whose weights are given by
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(a) Small c. (b) Medium c. (c) High c.

Figure 1 Illustration of equilibrium partitions with λ= 1, fixed service rates, and different c.

(14), on a simple instance with five facilities. The example instance uses S = [0,1]2 with

Euclidean distance and uniformly distributed demand (i.e., m(x)≡ 1).

Of particular interest is the relative load between facilities 1 and 2, which are located

very close together. For small c, the decentralized equilibrium and the centralized partition

are mainly determined by travel distance, so the centralized and decentralized partitions

are virtually identical. As c increases, Facility 1 (which has a higher service rate) begins

to pull some of the load away from facility 2 as c increases as shown in cases (b) and (c).

For large c, the economies of scale at facility 1 become so great that facility 2 becomes

totally idle in the decentralized equilibrium, even though it has the ability to serve cus-

tomers. Thus, we may observe resources going to waste under decentralized customer

behavior, an example of the well-known phenomenon of inefficiency in systems with strate-

(a) Small c. (b) Medium c. (c) High c.

Figure 2 Illustration of centralized partitions with λ= 1, fixed service rates, and different c.
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gic customers (Ghosh and Hassin 2021). In contrast, the centralized partition in Figure

2(b) creates a more balanced partition by making some use of the resources at facility 2,

which is underutilized and has a very small exernality term. In other words, the centralized

approach asks 3.8% of customers to accept a higher waiting time at facility 2 in order to

improve the conditions for 25% of customers at facility 1. Again, however, this necessity

arises because the service capacity at facility 1 was simply too high from the beginning.

However, decentralized behavior is not necessarily the root cause of the inefficiency. The

true problem is that a large amount of service capacity has been divided between two

facilities in close proximity. For a customer, switching from facility 2 to facility 1 produces

only a negligible increase in travel cost, but a significant reduction in waiting time, further

amplified by the fact that the total capacity of the system is much higher than the aggregate

demand. In Section 4.3, we show that that the inefficiency can be eliminated by jointly

optimizing the partition and service rates.

4.3. Socially Optimal Resource Allocation

Different values of µ will lead to different optimal solutions of (9)-(12). One can then define

the notion of a globally optimal value for the social welfare, by formulating the problem

W ∗∗ = min
A,µ

∑
k

Ak
c

µk−λAk

+

∫∫
Ak

dk(x)m(x)dx, (15)

subject to (10)-(12) as well as the budget constraint
∑

k µk = B. This is a simple and

natural model for resource allocation in spatial service systems. Clearly, W ∗∗ is a lower

bound on the social welfare for any given value of µ.

The objective function in (15) is convex in A for fixed µ, but not jointly convex in (A,µ).

Therefore, (15) may admit multiple local optima (µ∗∗,A∗∗). Every such local optimum

corresponds to an additively weighted Voronoi diagram whose weights solve yet another

type of equilibrium equation, and the service rates µ∗∗ have a closed-form dependence on

the areas A∗∗. The following theorem gives the characterization. The proof is essentially

an application of Theorem 4 to a particular instance of the abstract partitioning problem

(9)-(12) in which the function G in (9) is nonconvex.

Theorem 5. Any local optimum of (15) is described by an additively weighted Voronoi

diagram whose weights w∗∗ and areas A∗∗ satisfy the equilibrium condition

w∗∗k =
c

B−λ

(∑
j

√
A∗∗j

)
1√
A∗∗k

. (16)
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Furthermore, the service rates µ∗∗ are given by

µ∗∗k = λA∗∗k + (B−λ)

√
A∗∗k∑

j

√
A∗∗j

. (17)

Proof. First, let us fix a partition Ak and solve the problem

min
µ

∑
k

Ak
c

µk−λAk

+

∫∫
Ak

dk(x)dx (18)

subject to
∑

k µk = B. Note that, once Ak is fixed, the integral term in (18) has no

dependence on µ and can be omitted. Letting ζ be the Lagrange multiplier of the budget

constraint, we write the Lagrangian

L (µ, ζ) =
∑
k

Ak
c

µk−λAk

+ ζ

(∑
k

µk−B

)
. (19)

Setting ∇µL= 0 yields

ζ =Ak
c

(µk−λAk)
2 , k= 1, ...,K.

Equivalently, (µk−λAk) ζ =Ak
c

µk−λAk
. Adding up both sides over k yields

(B−λ) ζ =
∑
k

Ak
c

µk−λAk

. (20)

The right-hand side of (20) is precisely the objective function to be minimized. From (19),

we also have

µk = λAk +

√
cAk√
ζ
. (21)

Adding up both sides of (21) over k and solving for ζ, we obtain

ζ =
c

(B−λ)2

(∑
k

√
Ak

)2

. (22)

Substituting (22) into (20), we find that the optimal objective value is

c

B−λ

(∑
k

√
Ak

)2

=
c

B−λ
‖A‖ 1

2
,

where ‖ · ‖ 1
2

is the 1
2
-quasinorm.

Now, let us return to problem (15). If, for every feasible partition, we set µ optimally

according to (21), the problem can be reformulated as

min
A

c

B−λ
‖A‖ 1

2
+
∑
k

∫∫
Ak

dk(x)m(x)dx (23)

subject to (10)-(12). This is a special case of Theorem 4 with G (A) = c
B−λ‖A‖ 1

2
. This

function is not convex, but any locally optimal solution is described by an additively
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weighted Voronoi diagram with weights

w∗∗k =
∂G (A∗∗)

∂Ak

=
c

B−λ

(∑
j

√
A∗∗j

)
1√
A∗∗k

,

as required. We then obtain (17) by substituting (22) into (21). �

The local optima described by Theorem 5 are special cases of centralized equilibria. In

other words, if we were to fix the service rates to a set of locally optimal values µ∗∗, then

the framework of Section 4.2 would yield the same partition as Theorem 5. What is much

more surprising, however, is that the local optima described by Theorem 5 are also special

cases of decentralized equilibria. In other words, setting the service rates to µ∗∗ will recover

the same partition in both the centralized and decentralized setting. Furthermore, since

the global optimum is also a local optimum, it follows that we can recover the absolute

best possible social welfare, purely through decentralized customer behavior, as long as

the service rates are set correctly.

Theorem 6. Let (µ∗∗,A∗∗) be a local optimum of (15). Let A∗ be the equilibrium parti-

tion attained in the decentralized model under the service rates µ∗∗. Then, A∗ =A∗∗.

Proof. By the definition of an additively weighted Voronoi diagram, we have

dk(x) +
c

B−λ

(∑
j

√
A∗∗j

)
1√
A∗∗k
≤min

j 6=k
dj(x) +

c

B−λ

(∑
j

√
A∗∗j

)
1√
A∗∗j

(24)

for any x∈A∗∗k . Recall (17) and observe that

1

µ∗∗k −λA∗∗k
=

1

B−λ

(∑
j

√
A∗∗j

)
1√
A∗∗k

.

Consequently, (24) can be rewritten as

dk(x) +
c

µ∗∗k −λA∗∗k
≤min

j 6=k
dj(x) +

c

µ∗∗k −λA∗∗k
.

But this is exactly (1). Thus, A∗∗ must be the unique partition A∗ that satisfies the

decentralized equilibrium condition (3). �

To understand this striking result, recall from (14) that, for any centralized partition, the

Voronoi weight can be decomposed into two parts: the waiting cost incurred by a customer

(same as in the decentralized case), plus an additional externality term. When the service

rates are chosen optimally, this externality term becomes constant across all facilities. This

is because optimizing the service rates forces the marginal value of the resource at each

facility to be identical. Since adding a constant to the Voronoi weights does not change
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(a) Small c. (b) Medium c. (c) High c.

Figure 3 Illustration of globally optimal partitions with λ= 1, fixed service rates, and different c.

the partition, the externality no longer has any effect, and the same partition is obtained

in both the centralized and decentralized settings.

Figure 3 revisits the instance from Figures 1-2, with the same facility locations, but real-

locates the service rates in a globally optimal manner. Earlier, a large amount of capacity

was divided between facilities 1 and 2, which are situated very close together. Customers

choosing these facilities thus imposed a high externality on each other, and centralization

(Figure 2) mitigated this effect only partially. The global optimum balances the external-

ity across facilities by significantly reducing the allocation to facility 1 for small c, and

setting that allocation to zero (essentially closing the facility) for larger c. In other words,

optimization eliminates the root cause of the inefficiency in Figures 1-2, namely, the fact

that facility 1 should never have been assigned so much capacity to begin with. Once the

allocation is optimized, the price of anarchy is totally eliminated.

When the waiting time has more impact on the social welfare, the optimal allocation

focuses more on economies of scale. In the extreme case c→∞, where travel distance has

no impact at all, it would be optimal to put the entire budget into a single facility. This is

why we see more consolidation in Figure 3 as c increases.

4.4. Computation of Equilibrium Partitions

Thus far, we have considered three types of partitions: the decentralized equilibrium from

Section 3, the centralized equilibrium from Section 4.2, and the optimal equilibrium from

Section 4.3. Each type of partition is the optimal solution to a particular instance of

problem (9)-(12) with a different definition of G:

• Decentralized equilibrium: G (A) =− c
λ

∑
k log (µk−λAk).
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• Centralized equilibrium: G (A) =
∑

kAk
c

µk−λAk
.

• Optimal equilibrium: G (A) = c
B−λ‖A‖ 1

2
.

For the decentralized equilibrium, G does not have a clear economic meaning in and of

itself, but by Theorem 4, differentiating it will produce the Voronoi weights that satisfy

(3). For both centralized and decentralized equilibria, G is separable and convex, but it is

neither of these in the third case. Thus, the computational challenge is to solve the general

partition problem (9)-(12) for a general nonconvex G.

We use a two-stage reformulation of (9)-(12) in which the first stage has the form

min
A1,...,AK

G(A1, ...,AK) + Π(A1, ...,AK)

subject to
∑

kAk = 1 and Ak ≥ 0 for k = 1, ...,K. The function Π is the optimal value of

the second-stage problem

Π(A1, ...,AK) = min
A1,...,AK

∑
k

∫∫
Ak

gk (x)dν

subject to (10)-(12). Thus, the inner problem finds the optimal partition under fixed

areas Ak, while the outer problem optimizes over A. The inner problem is thus infinite-

dimensional, while the outer problem is finite-dimensional.

Using the theory of semidiscrete optimal transport (Hartmann and Schuhmacher 2020),

we show in the Appendix (the proof of Theorem 4) that the gradient ∇AΠ is the vector of

optimal Lagrange multipliers for the constraint (10) in the inner problem. For any fixed A

satisfying Ak > 0 for all k, we can compute ∇AΠ with reasonable accuracy by discretizing

S, which is a viable strategy for a two-dimensional geographical region. The integral in

(10) is then approximated by a sum, and the entire inner problem reduces to an instance of

the well-known “transportation problem” (Ford and Fulkerson 1956), which can be solved

using linear programming. We then use the dual variables of the constraint (10) as proxies

for ∇AΠ.

Since G has a closed form, we can easily evaluate its gradient. Given a fixed A, we

thus have an approximation of the gradient ∇AG (A) +∇AΠ (A) of the outer problem. We

may now use any standard continuous optimization algorithm that uses gradient infor-

mation, e.g., a first-order barrier method (Boyd and Vandenberghe 2004). Such a method

will find a locally optimal A∗, and by Theorem 4, the Voronoi weights that characterize

the corresponding partition are simply ∇AG (A∗). A minor technical complication in the

implementation of the method is the presence of the equality constraint
∑

kAk = 1, but
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this can be handled by fixing AK = 1−
∑K−1

k=1 Ak and optimizing over the remaining K−1

areas with inequality constraints only.

For the first two types of equilibria, this approach is sufficient because G is convex in

those cases, and therefore any locally optimal solution is globally optimal. For the third

type of equilibrium, where G is nonconvex, it is possible to find the global optimum by

using the branch-and-bound method (Horst and Tuy 2013). This well-known approach

imposes additional constraints of the form A`
k ≤Ak ≤Au

k for all k, thus dividing the feasible

region of the outer problem (the set of feasible A) into “blocks.” The global optimum

can be provably obtained as long as we have a tractable lower bound on the objective

value G (A) + Π (A) that becomes tight as the size of the block vanishes to zero. We use

the previous method to optimize over each block separately. Then, we eliminate those

blocks whose lower bounds are worse than the best solution found thus far (the “bound”

in branch-and-bound), and “branch” on the remaining blocks by splitting the intervals[
A`
k,A

u
k

]
.

Thus, all that is needed to find the global optimum is a lower bound on the objective

G (A) + Π (A). Carlsson et al. (2016) provides a lower bound on the second term Π (A).

For the first term, we recall from (15) and Theorem 5 that G (A) =
∑

kAk
c

µk−λAk
with the

service rates set to µk = λAk + (B−λ)
√
Ak∑

j

√
Aj

. Each term Ak
c

µk−λAk
is decreasing in µk

and increasing in Ak, and so we may write

G (A)≥
∑
k

A`
k

c

µuk −λA`
k

,

where µuk = λAu
k + (B−λ)

√
Au

k∑
j

√
A`

j

. It is routine to verify that this bound becomes tight as

Au
k −A`

k→ 0.

5. Equilibria and Social Optimality Under Random Shocks

Suppose now that customer decisions are subject to additional random shocks. That is,

given loads Ak on the facilities, a new customer arriving at location x will prefer the kth

facility if

dk(x) + fk (Ak) + τk ≤min
j 6=k

dj(x) + fj (Aj) + τj, (25)

where the random variables τk are identically distributed and independent of the arrival

process, service times, and each other. The presence of such random shocks in the model

can be viewed as a form of customer heterogeneity, reflecting differences in perception
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between individual customers of the nominal utilities of the choices. If we assume that each

τk follows a Gumbel distribution, (25) becomes an instance of the well-known multinomial

logit (MNL) choice model, used by, e.g., Armony and Maglaras (2004) to represent cus-

tomer decisions in an unobservable queue. Other alternatives are also possible: for example,

if τk are exponentially distributed, (25) will be an instance of the exponomial choice model

(Alptekinoglu and Semple 2016).

Such models are adopted in part because they provide tractable expressions for the

fractions of customers that choose each option, provided that the nominal utilities of the

options are fixed. For example, under the MNL model, the fraction of customers choosing an

option with nominal disutility ak is proportional to e−ak . In our setting, however, this is no

longer straightforward, as the nominal disutility of visiting the kth facility now depends on

the load on that facility, which is determined by customer choices. The equilibrium demand

is no longer a purely geometric partition of S since customer choice is now probabilistic.

Thus, we can no longer visualize it as a Voronoi diagram on a plane. Instead, the equilibrium

is a partition of a higher-dimensional space encompassing both the geographical location

and the idiosyncratic preferences of a customer.

We denote this location-preference space by S̃ = S × RK . The “location” at which a

customer arrives is now described by a vector of the form (x, τ1, ..., τK). Thus, demand still

follows a spatio-temporal Poisson process, but the intensity function is now m×hK , where

h is the common density of the random shocks. The “distance” between a customer at

(x, τ1, ..., τK) and facility k is replaced by

d̃k (x, τ1, ..., τK) = dk(x) + τk.

Since the random shocks can be negative, the “distance” function may take negative values

as well. While this is not a typical setting for Voronoi diagrams, it does not affect the

theory because, in (25), customer choices depend on the differences between d̃k values.

Thus, we may simply repeat the setup of Section 3. Given a fixed vector w, we define a

partition {Ak}Kk=1 of S̃ where

Ak =

{
(x, τ) : d̃k (x, τ) +wk ≤min

j 6=k
d̃j (x, τ) +wj

}
.

The area Ak (w) of the set Ak is the proportion of customers who prefer facility k, given

by

Ak (w) =

∫∫
Ak

(
K∏
j=1

h(τj)dτj

)
m(x)dx
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=

∫∫
S
P

(
dk(x) +wk + τk ≤min

j 6=k
dj(x) +wj + τj

)
m(x)dx

=

∫∫
S

(∫ ∏
j 6=k

H̄ (dk(x)− dj(x) +wk−wj + τ)h(τ)dτ

)
m(x)dx, (26)

where H̄ is the tail of the common distribution of the random shocks. The equilibrium

weights w∗k are, again, the solution to (3) with this new definition of Ak. The values Ak (w∗)

are precisely the proportions of customers that choose each option. Recall from Section 3

that existence, uniqueness, and structural properties of the equilibrium all followed from

properties of the area function established in Lemma 1. Therefore, the same results will

hold in the present setting as long as (26) can be shown to have these same properties.

This is fairly straightforward to show.

Lemma 5. The area Ak(w) defined in (26) has all of the properties listed in Lemma 1.

Proof. The continuity of Ak in w follows directly from (26) as it is an integral. To show

the second property, note wk − w̃k ≥ wj − w̃j, then wk − wj ≥ w̃j − w̃k. Since the tail H̄

decreases in wk−wj, we have Ak(w)≤Ak(w̃) by (26). The third property also follows from

(26) as H̄ is a decreasing function. By taking the derivatives of (26), we have

∂Ak(w)

∂wk
=
∑
j 6=k

∫∫
S
−

(∫ ∏
l 6=j,k

H̃lhj(τ)h(τ)dτ

)
m(x)dx=−

∑
j 6=k

∂Ak(w)

∂wj
,

where H̄l = H̄ (dk(x)− dl(x) +wk−wl + τ) and hj(τ) = h (dk(x)− dj(x) +wk−wj + τ).

This proves the last property. �

What is perhaps more surprising is that our analysis of social optimality from Section

4 also continues to hold. For the sake of argument, let us imagine a central planner with

the ability to observe the precise values of the random shocks for every customer. In other

words, the planner knows exactly where each customer arrives in the location-preference

space. The planner then partitions the space, assigning customers to facilities in a manner

that optimizes the social welfare, given by

W =
∑
k

Ak
c

µk−λAk

+

∫∫
Ak

d̃k (x, τ1, ..., τK)

(
K∏
j=1

h(τj)dτj

)
m(x)dx.

In essence, the planner is solving the same social welfare optimization problem as in Section

4.2, but on a different space S̃ and with different distance functions d̃k. The term G (A) in

the objective function remains unchanged from Section 4.2 because the expected waiting

time still has the same dependence on the proportions Ak; we have only changed the
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manner in which the proportions are computed. Applying Theorem 4, we find that the

optimal partition Ā (not of the plane this time, but of S ×RK) is described by

dk(x) +
∂G
(
Ā
)

∂Ak

+ τk ≤min
j 6=k

dj(x) +
∂G
(
Ā
)

∂Aj

+ τj, (x, τ1, ..., τK)∈ Āk,

with Ak computed according to (26). Since the analysis in Section 4 does not depend on

the specific choice of distance function, all of the results continue to hold. It is important

to note that the numerical values of the areas Ak, or the optimal service rates µ∗∗k , will

not be the same as under deterministic choice, because the areas are now computed in a

different way based on (26).

In sum, we still have the key result that any local optimum is achievable in the decen-

tralized setting. Arguably the result has become even stronger: all we need to compute µ∗∗k

is the distribution of the random shocks, but the social welfare that can be attained under

locally optimal values of the service rates will be as good as if we had known the precise

realizations of the shocks.

Lastly, we comment on the computation of the optimal partitions. Essentially, the tech-

nique is the same as in Section 4.4. In the context of random choice models, it was shown

by Anderson et al. (1989) that the second-stage objective Π (A) admits a lower-dimensional

reformulation; one can apply Algorithm 3 of Carlsson et al. (2016) to obtain the dual

variables of this problem efficiently. However, the solution becomes more cumbersome to

visualize, as the spatial region can no longer be neatly divided between facilities. Figure

4 presents a simple example with four facilities, which are located symmetrically in [0,1]2

with uniformly distributed demand. Any facility can be chosen by any customer, but the

choice probabilities depend on the location. The probability of choosing each facility is

visualized a separate 3D plot. The probability of choosing a facility is highest in a neigh-

borhood immediately surrounding it, but due to the differing service rates, the maximum

value attained by each probability is quite different. For the facility with the highest service

rate, the choice probability is above 0.5 in some parts of the region, but the facility with

the lowest service rate is never chosen with probability above 0.2.

6. Case Study: Hospital Beds in LA County

In this section, we present an in-depth illustration of the insights that our framework

can provide on a problem instance based on realistic population and resource allocation

data. Specifically, we use the geographical locations of the seven largest hospitals in Los
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Figure 4 Decentralized equilibrium for four facilities with service rates 1/2, 1/3, 1/4, and 1/5 under MNL choice.

Angeles County as our facilities, and the number of beds in each hospital as a proxy for

the service rates µk. Using the procedures in Section 4.4, we compute both centralized and

decentralized equilibria under these rates and compare them against the global optimum.

In addition, we use our framework to perform “what-if” analysis on the possible addition

(and geographical placement) of a hypothetical eighth facility.

We extracted a dataset of 90,855 census blocks comprising Los Angeles County, as well as

their populations, from the United States Census. Distances were rescaled so that all blocks

are located in the unit square. The population data provides an atomic intensity m (x) for

the arrival process. The total arrival rate λ was set to 1, as the presence of the constant c in

our model allows us to scale the arrival and service rates according to our convenience. The

total budget was set to B = 1.25, corresponding to an aggregate occupancy rate of 80%,

which is consistent with national standards (Phillip et al. 1984) and expert understanding

of hospital effectiveness (Keegan 2010). Letting nk be the (publicly available) number of

beds in hospital k, we let µk = nk∑
j nj
B be the proportion of the budget currently assigned

to the corresponding facility. We normalize the space, letting S = [0,1]2, and use Euclidean

distance to compute travel cost. Since both travel distances and arrival/service rates have

been normalized, we pick a small c = 0.001 to achieve a reasonable balance between the

two types of costs. We will briefly discuss the effect of varying this parameter later on.

For this fixed resource allocation, we compute the decentralized equilibrium from Section

3 and the centralized equilibrium from Section 4.2. Thus, we can test whether, and how

much, centralization would help to increase the efficiency of the current allocation. We

also compute the globally optimal allocation, described in Theorem 5, by running the

procedures in Section 4.4 with different starting points to avoid getting stuck in a local

optimum. This allows us to compare the current allocation against the most efficient one.

Additionally, we consider a hypothetical scenario in which an eighth facility is added.

We assume that the number of beds in this facility is given by n8 = 1
7

∑7
k=1 nk, i.e., the new
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facility has average capacity relative to the others. The budget is increased accordingly to

reflect this new capacity. Under this modified allocation, we again compute centralized and

decentralized equilibria, and compare these against the global optimum in which all eight

service rates are variable. These computations are performed for 64 candidate locations

for the new facility, and the best placement is reported for each type of equilibrium. In

this way, we can test how the optimal placement and resource allocation depend on the

equilibrium type.

Figure 5 shows each type of equilibrium partition under both 7 and 8 facilities, with

the population density shown using yellow dots. Several insights can be obtained from this

comparison:

First, although we have seen in Figures 1-2 that the centralized and decentralized par-

titions can be quite different, the aggregate demand in that stylized instance was much

lower than the total service capacity. In marked contrast, centralization offers little benefit

in a more realistic setting with high demand. Even under a suboptimal resource alloca-

tion, where the centralized and decentralized partitions do not coincide, they remain quite

similar in the 7-hospital scenario. This is because, when λ is close to B, every facility will

experience high load and there is little room for improvement by transferring part of the

load from one facility to another. There is more of a difference in the 8-hospital scenario:

the presence of additional capacity allows the centralized partition to shift some demand

away from more congested facilities (e.g., facilities 2, 5, and 6) and make the load more

balanced. However, in high-demand situations, decentralization is not a significant source

of inefficiency.

On the other hand, even when the demand is high, there is significant improvement to

be had by optimizing the resource allocation. As we saw earlier in Figure 3, the globally

optimal allocation tends to consolidate demand and make use of economies of scale. We

see this tendency in Figure 5 as well. For example, in Figure 5(a), the relatively sparsely

populated northern part of the map is divided between four facilities. The global optimum,

in Figure 5(e), reallocates capacity so that most of this demand is served by facility 6,

which is given a much higher service rate than the others. Additionally, from a purely

spatial standpoint, the placement of the seven existing hospitals is inefficient: facilities 1,

3 and 4 are very close together. This encourages the global optimum to close facility 3,
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(a) Decentralized partition, 7 facilities. (b) Decentralized partition, 8 facilities.

(c) Centralized partition, 7 facilities. (d) Centralized partition, 8 facilities.

(e) Global optimum, 7 facilities. (f) Global optimum, 8 facilities.

Figure 5 Optimal partitions with 7 and 8 facilities under different equilibrium types.
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as it offers virtually no savings in travel cost over its neighbors (however, this should be

contrasted with the 8-facility scenario as discussed below).

Next, we observe that the equilibrium type may not necessarily affect the optimal place-

ment of a new facility: perhaps unsurprisingly, in all three cases, the best location is in

the isolated population cluster in the northern part of the map. However, the presence of

the new facility significantly changes the optimal partition. One particularly interesting

observation is that facility 3, which was closed in Figure 5(e), is actually open again (albeit

with a small service rate) when a new facility is added. This is because facility 6 no longer

has to handle such a large portion of the demand, as part of it is now served by the new

facility. The service rate of facility 6 can then be reduced, and as a result, facility 3 again

becomes more attractive to the population in its immediate vicinity. Thus, somewhat sur-

prisingly, the inclusion of a new facility with additional capacity can actually reduce the

degree of consolidation and spread the capacity out more evenly. This behavior is due to

the complex spatial relationships between facilities, and can only be observed when the

spatial position of arrivals is modeled explicitly.

We also considered other values of c, but they did not appreciably change these insights.

As observed previously in Figure 3, higher c leads to a more consolidated global optimum,

eventually closing all but one of the facilities in extreme cases. This will also happen in

the present setting. In our opinion, however, it is more informative to examine situations

where there is a non-trivial tradeoff between travel cost and waiting time, as these are

the cases where we see the most interesting distinctions between equilibrium types and

partitions.

7. Concluding Remarks

We have presented a novel framework for describing, studying, computing, and visualizing

different types of demand equilibria in spatial service systems, where customers incur cost

based on both travel and waiting time, and the load on each queue is endogenized by arrival

locations. Our work is the first to provide a geometric characterization and interpretation

of demand equilibria in such systems. We formulate a general mathematical program that

can be used to compute both centralized and decentralized equilibria, and we prove that

these two types of equilibria coincide when the service capacity is allocated optimally

between facilities.
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A consistent message of our work is that the “price of anarchy” in spatial service systems

is, relatively, of less importance than the efficiency of the resource allocation. Even if the

allocation is suboptimal, a high aggregate load on the system will produce very similar par-

titions for centralized vs. decentralized paradigms. On the other hand, an optimal resource

allocation can change the partition dramatically, and moreover, this optimal partition is

achievable purely through decentralized behavior.

There are many possible avenues for future work. One possible direction is to endogenize

the arrival rate, so that the frequency of service is also determined by customers (e.g., in

the leisure or hospitality industry). Interdependence and interaction between arrivals at

different locations, using, e.g., self-exciting spatio-temporal demand processes, could be

another way to model endogenous arrival rates. Since the waiting time function in such

models depends on the region rather than the area, the equilibrium equation would become

infinite-dimensional, introducing substantial challenges. Yet another direction would be to

introduce a facility location decision into the model, so that, for example, the new hospital

in our case study could be placed algorithmically rather than through exhaustive search.

Such an algorithm would require considerable new developments in optimization theory.
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8. Appendix: Proofs

In the following, we give proofs for all results that were stated in the main text.

8.1. Proof of Theorem 4

We first observe that (9) admits an equivalent representation

min
A1,...,AK

G (A1, ...,AK) + inf
ν(Ak)=Ak

Aj∩Ak=∅

∑
k

∫∫
Ak

gk (x)dν, (27)

in which (9) is expressed as the sum of an “outer” problem over (A1, ...,AK)∈RK
+ and an

“inner” problem over the space of all partitions (A1, ...,AK) such that ν (Ak) =Ak for all

k. We state an auxiliary result that describes the optimal solution of the inner problem;

the proof is given in a separate section of the online supplement.

Lemma 6. The optimal solution A′k of the inner problem

min
A1,...,AK

∑
k

∫∫
Ak

gk (x)dν, (28)

subject to the constraints

Ak = ν (Ak) ,

ν (Aj ∩Ak) = 0, j 6= k,⋃
k

Ak = S,

satisfies

A′k = {x∈ S : gk (x)− ηk ≤ gj (x)− ηj} (29)

for all k and some constants ηk.

By (29), we may assume that ηK = 0 without loss of generality. This has the effect

of reducing the dimension of the problem by 1. We can restate Theorem 4 so that the

objective function depends only on A1, ...,AK−1. Problem (9)-(12) becomes

min
A1,...,AK−1

G (A1, ...,AK−1) +

K∑
k=1

∫∫
Ak

gk (x)dν (30)

subject to ν (Ak) = Ak for k = 1, ...,K − 1 as well as (11)-(12). The final region AK is

uniquely determined by the others. Then, the desired result can be equivalently stated

as follows: the optimal partition Ā for problem (30) is of the form (29) with weights η̄

satisfying −η̄=∇G.
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Using a Kantorovich duality argument, as in the proof of Lemma 6, allows us to rewrite

(30) as

min
A1,...,AK−1

G (A1, ...,AK−1) + sup
η∈RK−1

(∫∫
S

min
k

{
gK (x) ,min

k
gk (x)− ηk

}
dν+

K−1∑
k

Akηk

)
,

(31)

subject to the constraints Ak ≥ 0 and
∑K−1

k=1 Ak ≤ 1. This formulation now depends entirely

on A = (A1, ...,AK−1). Given any fixed value for this vector, Lemma 6 can be used to

recover the partition. The function

h∗ (A) = sup
η∈RK−1

(∫∫
S

min
k

{
gK (x) ,min

k
gk (x)− ηk

}
dν+

K−1∑
k

Akηk

)
is, by definition, the convex conjugate of the function

h (η) =−
∫∫
S

min
k

{
gK (x) ,min

k
gk (x)− ηk

}
dν.

Furthermore, ∂h
∂ηk

= ν (A′k) where the sets A′k are as in (29). Moreover, h (η) induces a

weighted Voronoi partition of the form

Ak (η) =

{
x∈ S : gk (x)− ηk ≤min

j 6=k
gj (x)− ηj

}
with ηK = 0.

By assumption, G is differentiable. The KKT conditions for problem (31), which are

necessary and sufficient for local optimality of a vector Ā, are given by

0 ∈ ∇G
(
Ā
)

+ ∂h∗− ζ + ζK · e, (32)

ζkĀk = 0, k= 1, ...,K − 1, (33)

ζK

(
1−

K−1∑
k=1

Āk

)
= 0, (34)

ζk ≥ 0, k= 1, ...,K − 1. (35)

Equations (33)-(34) are the complementary slackness conditions for the constraints on A.

In (32), e denotes a vector in RK−1 whose elements are all equal to 1, and ∂h∗ denotes the

Clarke generalized subdifferential of h∗. When Āk > 0, the kth element of ∂h∗ is simply

the partial derivative
∂h∗(Ā)
∂Ak

. However, when Āk = 0, the partial derivative is not defined,

requiring the more general notion of a subdifferential.

Because there is always at least one nonzero element of Ā, we may assume without

loss of generality that ζK = 0. Recall from convex analysis that A ∈ ∂h (η) if and only if
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η ∈ ∂h∗ (A), a basic fact about conjugacy and subdifferentials (Prop. 1.4.3 of Hiriart-Urruty

and Lemaréchal 2004). Since h is differentiable, we have

∂h∗ (A) = {η : ∇h (η) =A} ,

which tells us that the subdifferential ∂h∗ consists precisely of those vectors η that induce

a weighted Voronoi partition whose cells have masses equal to A. It therefore follows that

there exists some η̄ ∈ ∂h∗
(
Ā
)

such that

0 = ∇G
(
Ā
)

+ η̄− ζ,

ζkĀk = 0, k= 1, ...,K − 1,

ζk ≥ 0, k= 1, ...,K − 1,

or, equivalently,

∂G
(
Ā
)

∂Ak

=−η̄∗k ⇔ Āk > 0,

∂G
(
Ā
)

∂Ak

≥−η̄∗k ⇔ Āk = 0.

Let Ā be the partition corresponding to the vector Ā, and consider x ∈ Āk. If Āj > 0, we

have

gk (x) +
∂G
(
Ā
)

∂Ak

= gk− η̄k ≤ gj (x)− η̄j = gj (x) +
∂G
(
Ā
)

∂Aj

,

and, if Āj = 0, we have

gk (x) +
∂G
(
Ā
)

∂Ak

= gk− η̄k ≤ gj (x)− η̄j ≤ gj (x) +
∂G
(
Ā
)

∂Aj

,

which completes the proof.

8.2. Proof of Lemma 6

As in Section 4 above, the quantities Ak are fixed. We rewrite problem (28)-(29) equiva-

lently as the infinite-dimensional integer program

min
Jk(·)

∑
k

∫∫
S
Jk (x)gk (x)dν, (36)

subject to the constraints
K∑
k=1

Jk (x) = 1, ∀x∈ S, (37)∫∫
S
Jk (x)dν = Ak, k= 1, ...,K, (38)

Jk (x)∈ {0,1} , ∀x∈ S, k= 1, ...,K. (39)
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We shall make use of this formulation at the end of the proof. For the moment, however,

let us relax the problem by dropping the binary constraint (39). Then, problem (36)-(38)

is an instance of semidiscrete optimal transport (Hartmann and Schuhmacher 2020), and

therefore has the same optimal value as the Kantorovich dual

max
η∈RK

∫∫
S

(
min
k
gk (x)− ηk

)
dν+

K∑
k=1

Akηk, (40)

which can be straightforwardly derived using Thm. 1.3 of Villani (2021). Because the cost

functions gk are continuous, both the primal and dual have optimal solutions (Thm. 1.3

and Exercise 2.36 of Villani 2021).

We now construct a partition whose objective value matches that of (40) while addition-

ally satisfying (39). Letting η′ be the optimal dual solution, define a partition B1, ...,BK
by setting

Bk =

{
x∈ S : gk (x)− η′k ≤min

j 6=k
gj (x)− η′j

}
. (41)

The regularity conditions on the cost functions gk ensure that ν (Bj ∩Bk) = 0 for all j 6= k.

If we let Jk (x) = 1{x∈Bk} and plug this into (36), the objective value is∑
k

∫∫
S
Jk (x)gk (x)dν =

∑
k

∫∫
Bk
gk (x)dν

=
∑
k

∫∫
Bk

(gk (x)− η′k + η′k)dν

=
∑
k

∫∫
Bk

(gk (x)− η′k)dν+
∑
k

∫∫
Bk
η′k dν

=

∫∫
S

min
k

(gk (x)− η′k)dν+
∑
k

ηkν (Bk) , (42)

where (42) follows from (41). We see that (42) differs from the dual objective in (40) only

in that we have ν (Bk) where we wish to see Ak. Thus, it remains to show that ν (Bk) =Ak.

This equality, however, is precisely the first-order optimality condition of (40), derived by

differentiating the dual objective with respect to η.
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